| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
simp2 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 3 |
|
elfznn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℕ0 ) |
| 4 |
3
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
| 5 |
|
elfzuz3 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 |
|
uznn0sub |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
| 9 |
|
dvnadd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 10 |
1 2 4 8 9
|
syl22anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 11 |
4
|
nn0cnd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℂ ) |
| 12 |
|
elfzuz2 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 14 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 15 |
13 14
|
eleqtrrdi |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 16 |
15
|
nn0cnd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ℂ ) |
| 17 |
11 16
|
pncan3d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 + ( 𝑁 − 𝑀 ) ) = 𝑁 ) |
| 18 |
17
|
fveq2d |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 19 |
10 18
|
eqtrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 20 |
19
|
dmeqd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 21 |
|
cnex |
⊢ ℂ ∈ V |
| 22 |
21
|
a1i |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ℂ ∈ V ) |
| 23 |
|
dvnf |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) |
| 24 |
3 23
|
syl3an3 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ) |
| 25 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 ) |
| 26 |
3 25
|
syl3an3 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ dom 𝐹 ) |
| 27 |
|
elpmi |
⊢ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 28 |
27
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 29 |
28
|
simprd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom 𝐹 ⊆ 𝑆 ) |
| 30 |
26 29
|
sstrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 ) |
| 31 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ⊆ 𝑆 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 32 |
22 1 24 30 31
|
syl22anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 33 |
|
dvnbss |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 34 |
1 32 8 33
|
syl3anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑁 − 𝑀 ) ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 35 |
20 34
|
eqsstrrd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |