| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑀 + 𝑛 ) = ( 𝑀 + 0 ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑛 = 0 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) |
| 4 |
1 3
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑛 = 0 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑀 + 𝑛 ) = ( 𝑀 + 𝑘 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) |
| 9 |
6 8
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑀 + 𝑛 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
| 14 |
11 13
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑀 + 𝑛 ) = ( 𝑀 + 𝑁 ) ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) |
| 19 |
16 18
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ↔ ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑛 ) ) ) ↔ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) ) |
| 21 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 23 |
|
ssidd |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ℂ ⊆ ℂ ) |
| 24 |
|
cnex |
⊢ ℂ ∈ V |
| 25 |
|
elpm2g |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 26 |
24 25
|
mpan |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 27 |
26
|
simplbda |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → dom 𝐹 ⊆ 𝑆 ) |
| 28 |
24
|
a1i |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ℂ ∈ V ) |
| 29 |
|
simpl |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 30 |
|
pmss12g |
⊢ ( ( ( ℂ ⊆ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ∧ ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ) → ( ℂ ↑pm dom 𝐹 ) ⊆ ( ℂ ↑pm 𝑆 ) ) |
| 31 |
23 27 28 29 30
|
syl22anc |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( ℂ ↑pm dom 𝐹 ) ⊆ ( ℂ ↑pm 𝑆 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ℂ ↑pm dom 𝐹 ) ⊆ ( ℂ ↑pm 𝑆 ) ) |
| 33 |
|
dvnff |
⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 35 |
32 34
|
sseldd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 36 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 37 |
22 35 36
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 38 |
|
nn0cn |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) |
| 39 |
38
|
adantl |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 40 |
39
|
addridd |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 0 ) = 𝑀 ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) |
| 42 |
37 41
|
eqtr4d |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 0 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 0 ) ) ) |
| 43 |
|
oveq2 |
⊢ ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 44 |
22
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑆 ⊆ ℂ ) |
| 45 |
35
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 46 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 47 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) ) |
| 48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) ) |
| 49 |
39
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 50 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 51 |
50
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 52 |
|
1cnd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 53 |
49 51 52
|
addassd |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
| 55 |
|
simpllr |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 56 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) |
| 57 |
56
|
adantll |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) |
| 58 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( 𝑀 + 𝑘 ) ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 59 |
44 55 57 58
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 60 |
54 59
|
eqtr3d |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) |
| 61 |
48 60
|
eqeq12d |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ↔ ( 𝑆 D ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) ) ) |
| 62 |
43 61
|
imbitrrid |
⊢ ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) |
| 63 |
62
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) ) |
| 64 |
63
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑘 ) ) ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) ) ) |
| 65 |
5 10 15 20 42 64
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
| 66 |
65
|
com12 |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ0 → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
| 67 |
66
|
impr |
⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑆 D𝑛 ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑀 ) ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑀 + 𝑁 ) ) ) |