| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 2 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 3 | 1 2 | eleqtrdi | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 4 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ( ( ℕ0  ×  { 𝐹 } ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ( ( ℕ0  ×  { 𝐹 } ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 6 |  | fvex | ⊢ ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 )  ∈  V | 
						
							| 7 |  | fvex | ⊢ ( ( ℕ0  ×  { 𝐹 } ) ‘ ( 𝑁  +  1 ) )  ∈  V | 
						
							| 8 | 6 7 | opco1i | ⊢ ( ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ( ( ℕ0  ×  { 𝐹 } ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ) | 
						
							| 9 | 5 8 | eqtrdi | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  =  ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) | 
						
							| 11 | 10 | dvnfval | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 ) )  →  ( 𝑆  D𝑛  𝐹 )  =  seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑆  D𝑛  𝐹 )  =  seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 14 |  | fvex | ⊢ ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ∈  V | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑥  =  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  →  ( 𝑆  D  𝑥 )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 16 |  | ovex | ⊢ ( 𝑆  D  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) )  ∈  V | 
						
							| 17 | 15 10 16 | fvmpt | ⊢ ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  ∈  V  →  ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 18 | 14 17 | ax-mp | ⊢ ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 19 | 12 | fveq1d | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 )  =  ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) )  =  ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 21 | 18 20 | eqtr3id | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑆  D  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) )  =  ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥  ∈  V  ↦  ( 𝑆  D  𝑥 ) )  ∘  1st  ) ,  ( ℕ0  ×  { 𝐹 } ) ) ‘ 𝑁 ) ) ) | 
						
							| 22 | 9 13 21 | 3eqtr4d | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  𝐹  ∈  ( ℂ  ↑pm  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑆  D𝑛  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( 𝑆  D  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) ) |