| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
2
|
fveq2d |
|
| 4 |
1 3
|
eqeq12d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
fveq2 |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
fveq2d |
|
| 9 |
6 8
|
eqeq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
fveq2 |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
fveq2d |
|
| 14 |
11 13
|
eqeq12d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
fveq2 |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
fveq2d |
|
| 19 |
16 18
|
eqeq12d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
recnprss |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
ssidd |
|
| 24 |
|
cnex |
|
| 25 |
|
elpm2g |
|
| 26 |
24 25
|
mpan |
|
| 27 |
26
|
simplbda |
|
| 28 |
24
|
a1i |
|
| 29 |
|
simpl |
|
| 30 |
|
pmss12g |
|
| 31 |
23 27 28 29 30
|
syl22anc |
|
| 32 |
31
|
adantr |
|
| 33 |
|
dvnff |
|
| 34 |
33
|
ffvelcdmda |
|
| 35 |
32 34
|
sseldd |
|
| 36 |
|
dvn0 |
|
| 37 |
22 35 36
|
syl2anc |
|
| 38 |
|
nn0cn |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
addridd |
|
| 41 |
40
|
fveq2d |
|
| 42 |
37 41
|
eqtr4d |
|
| 43 |
|
oveq2 |
|
| 44 |
22
|
adantr |
|
| 45 |
35
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
|
dvnp1 |
|
| 48 |
44 45 46 47
|
syl3anc |
|
| 49 |
39
|
adantr |
|
| 50 |
|
nn0cn |
|
| 51 |
50
|
adantl |
|
| 52 |
|
1cnd |
|
| 53 |
49 51 52
|
addassd |
|
| 54 |
53
|
fveq2d |
|
| 55 |
|
simpllr |
|
| 56 |
|
nn0addcl |
|
| 57 |
56
|
adantll |
|
| 58 |
|
dvnp1 |
|
| 59 |
44 55 57 58
|
syl3anc |
|
| 60 |
54 59
|
eqtr3d |
|
| 61 |
48 60
|
eqeq12d |
|
| 62 |
43 61
|
imbitrrid |
|
| 63 |
62
|
expcom |
|
| 64 |
63
|
a2d |
|
| 65 |
5 10 15 20 42 64
|
nn0ind |
|
| 66 |
65
|
com12 |
|
| 67 |
66
|
impr |
|