Metamath Proof Explorer


Theorem pmss12g

Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Assertion pmss12g ACBDCVDWA𝑝𝑚BC𝑝𝑚D

Proof

Step Hyp Ref Expression
1 xpss12 BDACB×AD×C
2 1 ancoms ACBDB×AD×C
3 sstr fB×AB×AD×CfD×C
4 3 expcom B×AD×CfB×AfD×C
5 2 4 syl ACBDfB×AfD×C
6 5 anim2d ACBDFunffB×AFunffD×C
7 6 adantr ACBDCVDWFunffB×AFunffD×C
8 ssexg ACCVAV
9 ssexg BDDWBV
10 elpmg AVBVfA𝑝𝑚BFunffB×A
11 8 9 10 syl2an ACCVBDDWfA𝑝𝑚BFunffB×A
12 11 an4s ACBDCVDWfA𝑝𝑚BFunffB×A
13 elpmg CVDWfC𝑝𝑚DFunffD×C
14 13 adantl ACBDCVDWfC𝑝𝑚DFunffD×C
15 7 12 14 3imtr4d ACBDCVDWfA𝑝𝑚BfC𝑝𝑚D
16 15 ssrdv ACBDCVDWA𝑝𝑚BC𝑝𝑚D