Metamath Proof Explorer


Theorem pmss12g

Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Assertion pmss12g ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( 𝐴pm 𝐵 ) ⊆ ( 𝐶pm 𝐷 ) )

Proof

Step Hyp Ref Expression
1 xpss12 ( ( 𝐵𝐷𝐴𝐶 ) → ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) )
2 1 ancoms ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) )
3 sstr ( ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) )
4 3 expcom ( ( 𝐵 × 𝐴 ) ⊆ ( 𝐷 × 𝐶 ) → ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) )
5 2 4 syl ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝑓 ⊆ ( 𝐵 × 𝐴 ) → 𝑓 ⊆ ( 𝐷 × 𝐶 ) ) )
6 5 anim2d ( ( 𝐴𝐶𝐵𝐷 ) → ( ( Fun 𝑓𝑓 ⊆ ( 𝐵 × 𝐴 ) ) → ( Fun 𝑓𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) )
7 6 adantr ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( ( Fun 𝑓𝑓 ⊆ ( 𝐵 × 𝐴 ) ) → ( Fun 𝑓𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) )
8 ssexg ( ( 𝐴𝐶𝐶𝑉 ) → 𝐴 ∈ V )
9 ssexg ( ( 𝐵𝐷𝐷𝑊 ) → 𝐵 ∈ V )
10 elpmg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝑓 ∈ ( 𝐴pm 𝐵 ) ↔ ( Fun 𝑓𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) )
11 8 9 10 syl2an ( ( ( 𝐴𝐶𝐶𝑉 ) ∧ ( 𝐵𝐷𝐷𝑊 ) ) → ( 𝑓 ∈ ( 𝐴pm 𝐵 ) ↔ ( Fun 𝑓𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) )
12 11 an4s ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( 𝑓 ∈ ( 𝐴pm 𝐵 ) ↔ ( Fun 𝑓𝑓 ⊆ ( 𝐵 × 𝐴 ) ) ) )
13 elpmg ( ( 𝐶𝑉𝐷𝑊 ) → ( 𝑓 ∈ ( 𝐶pm 𝐷 ) ↔ ( Fun 𝑓𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) )
14 13 adantl ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( 𝑓 ∈ ( 𝐶pm 𝐷 ) ↔ ( Fun 𝑓𝑓 ⊆ ( 𝐷 × 𝐶 ) ) ) )
15 7 12 14 3imtr4d ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( 𝑓 ∈ ( 𝐴pm 𝐵 ) → 𝑓 ∈ ( 𝐶pm 𝐷 ) ) )
16 15 ssrdv ( ( ( 𝐴𝐶𝐵𝐷 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( 𝐴pm 𝐵 ) ⊆ ( 𝐶pm 𝐷 ) )