Metamath Proof Explorer


Theorem elpmg

Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Assertion elpmg AVBWCA𝑝𝑚BFunCCB×A

Proof

Step Hyp Ref Expression
1 pmvalg AVBWA𝑝𝑚B=g𝒫B×A|Fung
2 1 eleq2d AVBWCA𝑝𝑚BCg𝒫B×A|Fung
3 funeq g=CFungFunC
4 3 elrab Cg𝒫B×A|FungC𝒫B×AFunC
5 2 4 bitrdi AVBWCA𝑝𝑚BC𝒫B×AFunC
6 5 biancomd AVBWCA𝑝𝑚BFunCC𝒫B×A
7 elex C𝒫B×ACV
8 7 a1i AVBWC𝒫B×ACV
9 xpexg BWAVB×AV
10 9 ancoms AVBWB×AV
11 ssexg CB×AB×AVCV
12 11 expcom B×AVCB×ACV
13 10 12 syl AVBWCB×ACV
14 elpwg CVC𝒫B×ACB×A
15 14 a1i AVBWCVC𝒫B×ACB×A
16 8 13 15 pm5.21ndd AVBWC𝒫B×ACB×A
17 16 anbi2d AVBWFunCC𝒫B×AFunCCB×A
18 6 17 bitrd AVBWCA𝑝𝑚BFunCCB×A