| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) ) |
| 2 |
|
oveq2 |
|- ( n = 0 -> ( M + n ) = ( M + 0 ) ) |
| 3 |
2
|
fveq2d |
|- ( n = 0 -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + 0 ) ) ) |
| 4 |
1 3
|
eqeq12d |
|- ( n = 0 -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` ( M + 0 ) ) ) ) |
| 5 |
4
|
imbi2d |
|- ( n = 0 -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` ( M + 0 ) ) ) ) ) |
| 6 |
|
fveq2 |
|- ( n = k -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) |
| 7 |
|
oveq2 |
|- ( n = k -> ( M + n ) = ( M + k ) ) |
| 8 |
7
|
fveq2d |
|- ( n = k -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + k ) ) ) |
| 9 |
6 8
|
eqeq12d |
|- ( n = k -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 10 |
9
|
imbi2d |
|- ( n = k -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) ) ) ) |
| 11 |
|
fveq2 |
|- ( n = ( k + 1 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) ) |
| 12 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( M + n ) = ( M + ( k + 1 ) ) ) |
| 13 |
12
|
fveq2d |
|- ( n = ( k + 1 ) -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) |
| 14 |
11 13
|
eqeq12d |
|- ( n = ( k + 1 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( n = ( k + 1 ) -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) ) |
| 16 |
|
fveq2 |
|- ( n = N -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) ) |
| 17 |
|
oveq2 |
|- ( n = N -> ( M + n ) = ( M + N ) ) |
| 18 |
17
|
fveq2d |
|- ( n = N -> ( ( S Dn F ) ` ( M + n ) ) = ( ( S Dn F ) ` ( M + N ) ) ) |
| 19 |
16 18
|
eqeq12d |
|- ( n = N -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) <-> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( n = N -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` n ) = ( ( S Dn F ) ` ( M + n ) ) ) <-> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) ) |
| 21 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 22 |
21
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> S C_ CC ) |
| 23 |
|
ssidd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> CC C_ CC ) |
| 24 |
|
cnex |
|- CC e. _V |
| 25 |
|
elpm2g |
|- ( ( CC e. _V /\ S e. { RR , CC } ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 26 |
24 25
|
mpan |
|- ( S e. { RR , CC } -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 27 |
26
|
simplbda |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> dom F C_ S ) |
| 28 |
24
|
a1i |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> CC e. _V ) |
| 29 |
|
simpl |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> S e. { RR , CC } ) |
| 30 |
|
pmss12g |
|- ( ( ( CC C_ CC /\ dom F C_ S ) /\ ( CC e. _V /\ S e. { RR , CC } ) ) -> ( CC ^pm dom F ) C_ ( CC ^pm S ) ) |
| 31 |
23 27 28 29 30
|
syl22anc |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( CC ^pm dom F ) C_ ( CC ^pm S ) ) |
| 32 |
31
|
adantr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( CC ^pm dom F ) C_ ( CC ^pm S ) ) |
| 33 |
|
dvnff |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |
| 34 |
33
|
ffvelcdmda |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm dom F ) ) |
| 35 |
32 34
|
sseldd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 36 |
|
dvn0 |
|- ( ( S C_ CC /\ ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` M ) ) |
| 37 |
22 35 36
|
syl2anc |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` M ) ) |
| 38 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
| 39 |
38
|
adantl |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> M e. CC ) |
| 40 |
39
|
addridd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( M + 0 ) = M ) |
| 41 |
40
|
fveq2d |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn F ) ` ( M + 0 ) ) = ( ( S Dn F ) ` M ) ) |
| 42 |
37 41
|
eqtr4d |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` 0 ) = ( ( S Dn F ) ` ( M + 0 ) ) ) |
| 43 |
|
oveq2 |
|- ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) -> ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 44 |
22
|
adantr |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> S C_ CC ) |
| 45 |
35
|
adantr |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` M ) e. ( CC ^pm S ) ) |
| 46 |
|
simpr |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
| 47 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( ( S Dn F ) ` M ) e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) ) |
| 48 |
44 45 46 47
|
syl3anc |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) ) |
| 49 |
39
|
adantr |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> M e. CC ) |
| 50 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 51 |
50
|
adantl |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> k e. CC ) |
| 52 |
|
1cnd |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> 1 e. CC ) |
| 53 |
49 51 52
|
addassd |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( ( M + k ) + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) |
| 55 |
|
simpllr |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> F e. ( CC ^pm S ) ) |
| 56 |
|
nn0addcl |
|- ( ( M e. NN0 /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
| 57 |
56
|
adantll |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
| 58 |
|
dvnp1 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ ( M + k ) e. NN0 ) -> ( ( S Dn F ) ` ( ( M + k ) + 1 ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 59 |
44 55 57 58
|
syl3anc |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( ( M + k ) + 1 ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 60 |
54 59
|
eqtr3d |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) |
| 61 |
48 60
|
eqeq12d |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) <-> ( S _D ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) ) = ( S _D ( ( S Dn F ) ` ( M + k ) ) ) ) ) |
| 62 |
43 61
|
imbitrrid |
|- ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) |
| 63 |
62
|
expcom |
|- ( k e. NN0 -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) ) |
| 64 |
63
|
a2d |
|- ( k e. NN0 -> ( ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` k ) = ( ( S Dn F ) ` ( M + k ) ) ) -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` ( k + 1 ) ) = ( ( S Dn F ) ` ( M + ( k + 1 ) ) ) ) ) ) |
| 65 |
5 10 15 20 42 64
|
nn0ind |
|- ( N e. NN0 -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) |
| 66 |
65
|
com12 |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ M e. NN0 ) -> ( N e. NN0 -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) ) |
| 67 |
66
|
impr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( ( S Dn ( ( S Dn F ) ` M ) ) ` N ) = ( ( S Dn F ) ` ( M + N ) ) ) |