| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 2 |
|
0zd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> 0 e. ZZ ) |
| 3 |
|
fvconst2g |
|- ( ( F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) = F ) |
| 4 |
3
|
adantll |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) = F ) |
| 5 |
|
dmexg |
|- ( F e. ( CC ^pm S ) -> dom F e. _V ) |
| 6 |
5
|
ad2antlr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> dom F e. _V ) |
| 7 |
|
cnex |
|- CC e. _V |
| 8 |
7
|
a1i |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> CC e. _V ) |
| 9 |
|
elpm2g |
|- ( ( CC e. _V /\ S e. { RR , CC } ) -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 10 |
7 9
|
mpan |
|- ( S e. { RR , CC } -> ( F e. ( CC ^pm S ) <-> ( F : dom F --> CC /\ dom F C_ S ) ) ) |
| 11 |
10
|
biimpa |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( F : dom F --> CC /\ dom F C_ S ) ) |
| 12 |
11
|
simpld |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> F : dom F --> CC ) |
| 13 |
12
|
adantr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> F : dom F --> CC ) |
| 14 |
|
fpmg |
|- ( ( dom F e. _V /\ CC e. _V /\ F : dom F --> CC ) -> F e. ( CC ^pm dom F ) ) |
| 15 |
6 8 13 14
|
syl3anc |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> F e. ( CC ^pm dom F ) ) |
| 16 |
4 15
|
eqeltrd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ k e. NN0 ) -> ( ( NN0 X. { F } ) ` k ) e. ( CC ^pm dom F ) ) |
| 17 |
|
vex |
|- k e. _V |
| 18 |
|
vex |
|- n e. _V |
| 19 |
17 18
|
opco1i |
|- ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) = ( ( x e. _V |-> ( S _D x ) ) ` k ) |
| 20 |
|
oveq2 |
|- ( x = k -> ( S _D x ) = ( S _D k ) ) |
| 21 |
|
eqid |
|- ( x e. _V |-> ( S _D x ) ) = ( x e. _V |-> ( S _D x ) ) |
| 22 |
|
ovex |
|- ( S _D k ) e. _V |
| 23 |
20 21 22
|
fvmpt |
|- ( k e. _V -> ( ( x e. _V |-> ( S _D x ) ) ` k ) = ( S _D k ) ) |
| 24 |
23
|
elv |
|- ( ( x e. _V |-> ( S _D x ) ) ` k ) = ( S _D k ) |
| 25 |
19 24
|
eqtri |
|- ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) = ( S _D k ) |
| 26 |
7
|
a1i |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> CC e. _V ) |
| 27 |
5
|
ad2antlr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom F e. _V ) |
| 28 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D k ) : dom ( S _D k ) --> CC ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( S _D k ) : dom ( S _D k ) --> CC ) |
| 30 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> S C_ CC ) |
| 32 |
|
simprl |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> k e. ( CC ^pm dom F ) ) |
| 33 |
|
elpm2g |
|- ( ( CC e. _V /\ dom F e. _V ) -> ( k e. ( CC ^pm dom F ) <-> ( k : dom k --> CC /\ dom k C_ dom F ) ) ) |
| 34 |
7 27 33
|
sylancr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k e. ( CC ^pm dom F ) <-> ( k : dom k --> CC /\ dom k C_ dom F ) ) ) |
| 35 |
32 34
|
mpbid |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k : dom k --> CC /\ dom k C_ dom F ) ) |
| 36 |
35
|
simpld |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> k : dom k --> CC ) |
| 37 |
35
|
simprd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom k C_ dom F ) |
| 38 |
11
|
simprd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> dom F C_ S ) |
| 39 |
38
|
adantr |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom F C_ S ) |
| 40 |
37 39
|
sstrd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom k C_ S ) |
| 41 |
31 36 40
|
dvbss |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom ( S _D k ) C_ dom k ) |
| 42 |
41 37
|
sstrd |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> dom ( S _D k ) C_ dom F ) |
| 43 |
|
elpm2r |
|- ( ( ( CC e. _V /\ dom F e. _V ) /\ ( ( S _D k ) : dom ( S _D k ) --> CC /\ dom ( S _D k ) C_ dom F ) ) -> ( S _D k ) e. ( CC ^pm dom F ) ) |
| 44 |
26 27 29 42 43
|
syl22anc |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( S _D k ) e. ( CC ^pm dom F ) ) |
| 45 |
25 44
|
eqeltrid |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ ( k e. ( CC ^pm dom F ) /\ n e. ( CC ^pm dom F ) ) ) -> ( k ( ( x e. _V |-> ( S _D x ) ) o. 1st ) n ) e. ( CC ^pm dom F ) ) |
| 46 |
1 2 16 45
|
seqf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) : NN0 --> ( CC ^pm dom F ) ) |
| 47 |
21
|
dvnfval |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 48 |
30 47
|
sylan |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) = seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) ) |
| 49 |
48
|
feq1d |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) : NN0 --> ( CC ^pm dom F ) <-> seq 0 ( ( ( x e. _V |-> ( S _D x ) ) o. 1st ) , ( NN0 X. { F } ) ) : NN0 --> ( CC ^pm dom F ) ) ) |
| 50 |
46 49
|
mpbird |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |