Metamath Proof Explorer


Theorem dvn0

Description: Zero times iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvn0 SF𝑝𝑚SSDnF0=F

Proof

Step Hyp Ref Expression
1 eqid xVSDx=xVSDx
2 1 dvnfval SF𝑝𝑚SSDnF=seq0xVSDx1st0×F
3 2 fveq1d SF𝑝𝑚SSDnF0=seq0xVSDx1st0×F0
4 0z 0
5 simpr SF𝑝𝑚SF𝑝𝑚S
6 0nn0 00
7 fvconst2g F𝑝𝑚S000×F0=F
8 5 6 7 sylancl SF𝑝𝑚S0×F0=F
9 4 8 seq1i SF𝑝𝑚Sseq0xVSDx1st0×F0=F
10 3 9 eqtrd SF𝑝𝑚SSDnF0=F