Metamath Proof Explorer


Definition df-dvn

Description: Define the n -th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-dvn Dn=s𝒫,f𝑝𝑚sseq0xVsDx1st0×f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvn classDn
1 vs setvars
2 cc class
3 2 cpw class𝒫
4 vf setvarf
5 cpm class𝑝𝑚
6 1 cv setvars
7 2 6 5 co class𝑝𝑚s
8 cc0 class0
9 vx setvarx
10 cvv classV
11 cdv classD
12 9 cv setvarx
13 6 12 11 co classxs
14 9 10 13 cmpt classxVsDx
15 c1st class1st
16 14 15 ccom classxVsDx1st
17 cn0 class0
18 4 cv setvarf
19 18 csn classf
20 17 19 cxp class0×f
21 16 20 8 cseq classseq0xVsDx1st0×f
22 1 4 3 7 21 cmpo classs𝒫,f𝑝𝑚sseq0xVsDx1st0×f
23 0 22 wceq wffDn=s𝒫,f𝑝𝑚sseq0xVsDx1st0×f