| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnff |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) -> ( S Dn F ) : NN0 --> ( CC ^pm dom F ) ) |
| 2 |
1
|
ffvelcdmda |
|- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) ) |
| 3 |
2
|
3impa |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) ) |
| 4 |
|
cnex |
|- CC e. _V |
| 5 |
|
simp2 |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> F e. ( CC ^pm S ) ) |
| 6 |
5
|
dmexd |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> dom F e. _V ) |
| 7 |
|
elpm2g |
|- ( ( CC e. _V /\ dom F e. _V ) -> ( ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) <-> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC /\ dom ( ( S Dn F ) ` N ) C_ dom F ) ) ) |
| 8 |
4 6 7
|
sylancr |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( ( S Dn F ) ` N ) e. ( CC ^pm dom F ) <-> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC /\ dom ( ( S Dn F ) ` N ) C_ dom F ) ) ) |
| 9 |
3 8
|
mpbid |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC /\ dom ( ( S Dn F ) ` N ) C_ dom F ) ) |
| 10 |
9
|
simpld |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ N e. NN0 ) -> ( ( S Dn F ) ` N ) : dom ( ( S Dn F ) ` N ) --> CC ) |