| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | taylpfval.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 |  | taylpfval.a |  |-  ( ph -> A C_ S ) | 
						
							| 4 |  | taylpfval.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 5 |  | taylpfval.b |  |-  ( ph -> B e. dom ( ( S Dn F ) ` N ) ) | 
						
							| 6 |  | 0z |  |-  0 e. ZZ | 
						
							| 7 | 4 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 8 |  | fzval2 |  |-  ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) | 
						
							| 9 | 6 7 8 | sylancr |  |-  ( ph -> ( 0 ... N ) = ( ( 0 [,] N ) i^i ZZ ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( ph -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ X e. CC ) -> ( k e. ( 0 ... N ) <-> k e. ( ( 0 [,] N ) i^i ZZ ) ) ) | 
						
							| 12 | 11 | biimpa |  |-  ( ( ( ph /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) | 
						
							| 13 | 4 | orcd |  |-  ( ph -> ( N e. NN0 \/ N = +oo ) ) | 
						
							| 14 | 1 2 3 4 5 | taylplem1 |  |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) | 
						
							| 15 | 1 2 3 13 14 | taylfvallem1 |  |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC ) | 
						
							| 16 | 12 15 | syldan |  |-  ( ( ( ph /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC ) |