Metamath Proof Explorer


Theorem taylfvallem1

Description: Lemma for taylfval . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s
|- ( ph -> S e. { RR , CC } )
taylfval.f
|- ( ph -> F : A --> CC )
taylfval.a
|- ( ph -> A C_ S )
taylfval.n
|- ( ph -> ( N e. NN0 \/ N = +oo ) )
taylfval.b
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) )
Assertion taylfvallem1
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC )

Proof

Step Hyp Ref Expression
1 taylfval.s
 |-  ( ph -> S e. { RR , CC } )
2 taylfval.f
 |-  ( ph -> F : A --> CC )
3 taylfval.a
 |-  ( ph -> A C_ S )
4 taylfval.n
 |-  ( ph -> ( N e. NN0 \/ N = +oo ) )
5 taylfval.b
 |-  ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) )
6 1 ad2antrr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> S e. { RR , CC } )
7 cnex
 |-  CC e. _V
8 7 a1i
 |-  ( ph -> CC e. _V )
9 elpm2r
 |-  ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) )
10 8 1 2 3 9 syl22anc
 |-  ( ph -> F e. ( CC ^pm S ) )
11 10 ad2antrr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F e. ( CC ^pm S ) )
12 simpr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) )
13 12 elin2d
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ZZ )
14 12 elin1d
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( 0 [,] N ) )
15 0xr
 |-  0 e. RR*
16 nn0re
 |-  ( N e. NN0 -> N e. RR )
17 16 rexrd
 |-  ( N e. NN0 -> N e. RR* )
18 id
 |-  ( N = +oo -> N = +oo )
19 pnfxr
 |-  +oo e. RR*
20 18 19 eqeltrdi
 |-  ( N = +oo -> N e. RR* )
21 17 20 jaoi
 |-  ( ( N e. NN0 \/ N = +oo ) -> N e. RR* )
22 4 21 syl
 |-  ( ph -> N e. RR* )
23 22 ad2antrr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> N e. RR* )
24 elicc1
 |-  ( ( 0 e. RR* /\ N e. RR* ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) )
25 15 23 24 sylancr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) )
26 14 25 mpbid
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. RR* /\ 0 <_ k /\ k <_ N ) )
27 26 simp2d
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 <_ k )
28 elnn0z
 |-  ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) )
29 13 27 28 sylanbrc
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. NN0 )
30 dvnf
 |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC )
31 6 11 29 30 syl3anc
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC )
32 5 adantlr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) )
33 31 32 ffvelrnd
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC )
34 29 faccld
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. NN )
35 34 nncnd
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. CC )
36 34 nnne0d
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) =/= 0 )
37 33 35 36 divcld
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC )
38 simplr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> X e. CC )
39 2 ad2antrr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F : A --> CC )
40 dvnbss
 |-  ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> dom ( ( S Dn F ) ` k ) C_ dom F )
41 6 11 29 40 syl3anc
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> dom ( ( S Dn F ) ` k ) C_ dom F )
42 39 41 fssdmd
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> dom ( ( S Dn F ) ` k ) C_ A )
43 recnprss
 |-  ( S e. { RR , CC } -> S C_ CC )
44 1 43 syl
 |-  ( ph -> S C_ CC )
45 3 44 sstrd
 |-  ( ph -> A C_ CC )
46 45 ad2antrr
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> A C_ CC )
47 42 46 sstrd
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> dom ( ( S Dn F ) ` k ) C_ CC )
48 47 32 sseldd
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. CC )
49 38 48 subcld
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( X - B ) e. CC )
50 49 29 expcld
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( X - B ) ^ k ) e. CC )
51 37 50 mulcld
 |-  ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC )