Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylfval.n |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
5 |
|
taylfval.b |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
6 |
1
|
ad2antrr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> S e. { RR , CC } ) |
7 |
|
cnex |
|- CC e. _V |
8 |
7
|
a1i |
|- ( ph -> CC e. _V ) |
9 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
10 |
8 1 2 3 9
|
syl22anc |
|- ( ph -> F e. ( CC ^pm S ) ) |
11 |
10
|
ad2antrr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F e. ( CC ^pm S ) ) |
12 |
|
simpr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( ( 0 [,] N ) i^i ZZ ) ) |
13 |
12
|
elin2d |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ZZ ) |
14 |
12
|
elin1d |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. ( 0 [,] N ) ) |
15 |
|
0xr |
|- 0 e. RR* |
16 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
17 |
16
|
rexrd |
|- ( N e. NN0 -> N e. RR* ) |
18 |
|
id |
|- ( N = +oo -> N = +oo ) |
19 |
|
pnfxr |
|- +oo e. RR* |
20 |
18 19
|
eqeltrdi |
|- ( N = +oo -> N e. RR* ) |
21 |
17 20
|
jaoi |
|- ( ( N e. NN0 \/ N = +oo ) -> N e. RR* ) |
22 |
4 21
|
syl |
|- ( ph -> N e. RR* ) |
23 |
22
|
ad2antrr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> N e. RR* ) |
24 |
|
elicc1 |
|- ( ( 0 e. RR* /\ N e. RR* ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) |
25 |
15 23 24
|
sylancr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. ( 0 [,] N ) <-> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) ) |
26 |
14 25
|
mpbid |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( k e. RR* /\ 0 <_ k /\ k <_ N ) ) |
27 |
26
|
simp2d |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> 0 <_ k ) |
28 |
|
elnn0z |
|- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
29 |
13 27 28
|
sylanbrc |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> k e. NN0 ) |
30 |
|
dvnf |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
31 |
6 11 29 30
|
syl3anc |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( S Dn F ) ` k ) : dom ( ( S Dn F ) ` k ) --> CC ) |
32 |
5
|
adantlr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
33 |
31 32
|
ffvelrnd |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( S Dn F ) ` k ) ` B ) e. CC ) |
34 |
29
|
faccld |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. NN ) |
35 |
34
|
nncnd |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) e. CC ) |
36 |
34
|
nnne0d |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ! ` k ) =/= 0 ) |
37 |
33 35 36
|
divcld |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) e. CC ) |
38 |
|
simplr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> X e. CC ) |
39 |
2
|
ad2antrr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> F : A --> CC ) |
40 |
|
dvnbss |
|- ( ( S e. { RR , CC } /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> dom ( ( S Dn F ) ` k ) C_ dom F ) |
41 |
6 11 29 40
|
syl3anc |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> dom ( ( S Dn F ) ` k ) C_ dom F ) |
42 |
39 41
|
fssdmd |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> dom ( ( S Dn F ) ` k ) C_ A ) |
43 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
44 |
1 43
|
syl |
|- ( ph -> S C_ CC ) |
45 |
3 44
|
sstrd |
|- ( ph -> A C_ CC ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> A C_ CC ) |
47 |
42 46
|
sstrd |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> dom ( ( S Dn F ) ` k ) C_ CC ) |
48 |
47 32
|
sseldd |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. CC ) |
49 |
38 48
|
subcld |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( X - B ) e. CC ) |
50 |
49 29
|
expcld |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( X - B ) ^ k ) e. CC ) |
51 |
37 50
|
mulcld |
|- ( ( ( ph /\ X e. CC ) /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) e. CC ) |