Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x .
This "extended" version of taylpfval additionally handles the case N = +oo , in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | taylfval.s | |- ( ph -> S e. { RR , CC } ) |
|
| taylfval.f | |- ( ph -> F : A --> CC ) |
||
| taylfval.a | |- ( ph -> A C_ S ) |
||
| taylfval.n | |- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
||
| taylfval.b | |- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
||
| taylfval.t | |- T = ( N ( S Tayl F ) B ) |
||
| Assertion | taylfval | |- ( ph -> T = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taylfval.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | taylfval.f | |- ( ph -> F : A --> CC ) |
|
| 3 | taylfval.a | |- ( ph -> A C_ S ) |
|
| 4 | taylfval.n | |- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
|
| 5 | taylfval.b | |- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
|
| 6 | taylfval.t | |- T = ( N ( S Tayl F ) B ) |
|
| 7 | df-tayl | |- Tayl = ( s e. { RR , CC } , f e. ( CC ^pm s ) |-> ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( s Dn f ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) ) |
|
| 8 | 7 | a1i | |- ( ph -> Tayl = ( s e. { RR , CC } , f e. ( CC ^pm s ) |-> ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( s Dn f ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) ) ) |
| 9 | eqidd | |- ( ( ph /\ ( s = S /\ f = F ) ) -> ( NN0 u. { +oo } ) = ( NN0 u. { +oo } ) ) |
|
| 10 | oveq12 | |- ( ( s = S /\ f = F ) -> ( s Dn f ) = ( S Dn F ) ) |
|
| 11 | 10 | ad2antlr | |- ( ( ( ph /\ ( s = S /\ f = F ) ) /\ k e. ( ( 0 [,] n ) i^i ZZ ) ) -> ( s Dn f ) = ( S Dn F ) ) |
| 12 | 11 | fveq1d | |- ( ( ( ph /\ ( s = S /\ f = F ) ) /\ k e. ( ( 0 [,] n ) i^i ZZ ) ) -> ( ( s Dn f ) ` k ) = ( ( S Dn F ) ` k ) ) |
| 13 | 12 | dmeqd | |- ( ( ( ph /\ ( s = S /\ f = F ) ) /\ k e. ( ( 0 [,] n ) i^i ZZ ) ) -> dom ( ( s Dn f ) ` k ) = dom ( ( S Dn F ) ` k ) ) |
| 14 | 13 | iineq2dv | |- ( ( ph /\ ( s = S /\ f = F ) ) -> |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( s Dn f ) ` k ) = |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) ) |
| 15 | 12 | fveq1d | |- ( ( ( ph /\ ( s = S /\ f = F ) ) /\ k e. ( ( 0 [,] n ) i^i ZZ ) ) -> ( ( ( s Dn f ) ` k ) ` a ) = ( ( ( S Dn F ) ` k ) ` a ) ) |
| 16 | 15 | oveq1d | |- ( ( ( ph /\ ( s = S /\ f = F ) ) /\ k e. ( ( 0 [,] n ) i^i ZZ ) ) -> ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) = ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) ) |
| 17 | 16 | oveq1d | |- ( ( ( ph /\ ( s = S /\ f = F ) ) /\ k e. ( ( 0 [,] n ) i^i ZZ ) ) -> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) |
| 18 | 17 | mpteq2dva | |- ( ( ph /\ ( s = S /\ f = F ) ) -> ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) = ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) |
| 19 | 18 | oveq2d | |- ( ( ph /\ ( s = S /\ f = F ) ) -> ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) = ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) |
| 20 | 19 | xpeq2d | |- ( ( ph /\ ( s = S /\ f = F ) ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) = ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) |
| 21 | 20 | iuneq2d | |- ( ( ph /\ ( s = S /\ f = F ) ) -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) |
| 22 | 9 14 21 | mpoeq123dv | |- ( ( ph /\ ( s = S /\ f = F ) ) -> ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( s Dn f ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( s Dn f ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) = ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) ) |
| 23 | simpr | |- ( ( ph /\ s = S ) -> s = S ) |
|
| 24 | 23 | oveq2d | |- ( ( ph /\ s = S ) -> ( CC ^pm s ) = ( CC ^pm S ) ) |
| 25 | cnex | |- CC e. _V |
|
| 26 | 25 | a1i | |- ( ph -> CC e. _V ) |
| 27 | elpm2r | |- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
|
| 28 | 26 1 2 3 27 | syl22anc | |- ( ph -> F e. ( CC ^pm S ) ) |
| 29 | nn0ex | |- NN0 e. _V |
|
| 30 | snex | |- { +oo } e. _V |
|
| 31 | 29 30 | unex | |- ( NN0 u. { +oo } ) e. _V |
| 32 | 0xr | |- 0 e. RR* |
|
| 33 | nn0ssre | |- NN0 C_ RR |
|
| 34 | ressxr | |- RR C_ RR* |
|
| 35 | 33 34 | sstri | |- NN0 C_ RR* |
| 36 | pnfxr | |- +oo e. RR* |
|
| 37 | snssi | |- ( +oo e. RR* -> { +oo } C_ RR* ) |
|
| 38 | 36 37 | ax-mp | |- { +oo } C_ RR* |
| 39 | 35 38 | unssi | |- ( NN0 u. { +oo } ) C_ RR* |
| 40 | 39 | sseli | |- ( n e. ( NN0 u. { +oo } ) -> n e. RR* ) |
| 41 | elun | |- ( n e. ( NN0 u. { +oo } ) <-> ( n e. NN0 \/ n e. { +oo } ) ) |
|
| 42 | nn0ge0 | |- ( n e. NN0 -> 0 <_ n ) |
|
| 43 | 0lepnf | |- 0 <_ +oo |
|
| 44 | elsni | |- ( n e. { +oo } -> n = +oo ) |
|
| 45 | 43 44 | breqtrrid | |- ( n e. { +oo } -> 0 <_ n ) |
| 46 | 42 45 | jaoi | |- ( ( n e. NN0 \/ n e. { +oo } ) -> 0 <_ n ) |
| 47 | 41 46 | sylbi | |- ( n e. ( NN0 u. { +oo } ) -> 0 <_ n ) |
| 48 | lbicc2 | |- ( ( 0 e. RR* /\ n e. RR* /\ 0 <_ n ) -> 0 e. ( 0 [,] n ) ) |
|
| 49 | 32 40 47 48 | mp3an2i | |- ( n e. ( NN0 u. { +oo } ) -> 0 e. ( 0 [,] n ) ) |
| 50 | 0z | |- 0 e. ZZ |
|
| 51 | inelcm | |- ( ( 0 e. ( 0 [,] n ) /\ 0 e. ZZ ) -> ( ( 0 [,] n ) i^i ZZ ) =/= (/) ) |
|
| 52 | 49 50 51 | sylancl | |- ( n e. ( NN0 u. { +oo } ) -> ( ( 0 [,] n ) i^i ZZ ) =/= (/) ) |
| 53 | fvex | |- ( ( S Dn F ) ` k ) e. _V |
|
| 54 | 53 | dmex | |- dom ( ( S Dn F ) ` k ) e. _V |
| 55 | 54 | rgenw | |- A. k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) e. _V |
| 56 | iinexg | |- ( ( ( ( 0 [,] n ) i^i ZZ ) =/= (/) /\ A. k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) e. _V ) -> |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) e. _V ) |
|
| 57 | 52 55 56 | sylancl | |- ( n e. ( NN0 u. { +oo } ) -> |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) e. _V ) |
| 58 | 57 | rgen | |- A. n e. ( NN0 u. { +oo } ) |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) e. _V |
| 59 | eqid | |- ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) = ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) |
|
| 60 | 59 | mpoexxg | |- ( ( ( NN0 u. { +oo } ) e. _V /\ A. n e. ( NN0 u. { +oo } ) |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) e. _V ) -> ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) e. _V ) |
| 61 | 31 58 60 | mp2an | |- ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) e. _V |
| 62 | 61 | a1i | |- ( ph -> ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) e. _V ) |
| 63 | 8 22 24 1 28 62 | ovmpodx | |- ( ph -> ( S Tayl F ) = ( n e. ( NN0 u. { +oo } ) , a e. |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) |-> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) ) ) |
| 64 | simprl | |- ( ( ph /\ ( n = N /\ a = B ) ) -> n = N ) |
|
| 65 | 64 | oveq2d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( 0 [,] n ) = ( 0 [,] N ) ) |
| 66 | 65 | ineq1d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( ( 0 [,] n ) i^i ZZ ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 67 | simprr | |- ( ( ph /\ ( n = N /\ a = B ) ) -> a = B ) |
|
| 68 | 67 | fveq2d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( ( ( S Dn F ) ` k ) ` a ) = ( ( ( S Dn F ) ` k ) ` B ) ) |
| 69 | 68 | oveq1d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) = ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) ) |
| 70 | 67 | oveq2d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( x - a ) = ( x - B ) ) |
| 71 | 70 | oveq1d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( ( x - a ) ^ k ) = ( ( x - B ) ^ k ) ) |
| 72 | 69 71 | oveq12d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) |
| 73 | 66 72 | mpteq12dv | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) |
| 74 | 73 | oveq2d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) = ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) |
| 75 | 74 | xpeq2d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) = ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
| 76 | 75 | iuneq2d | |- ( ( ph /\ ( n = N /\ a = B ) ) -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] n ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` a ) / ( ! ` k ) ) x. ( ( x - a ) ^ k ) ) ) ) ) = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
| 77 | simpr | |- ( ( ph /\ n = N ) -> n = N ) |
|
| 78 | 77 | oveq2d | |- ( ( ph /\ n = N ) -> ( 0 [,] n ) = ( 0 [,] N ) ) |
| 79 | 78 | ineq1d | |- ( ( ph /\ n = N ) -> ( ( 0 [,] n ) i^i ZZ ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 80 | iineq1 | |- ( ( ( 0 [,] n ) i^i ZZ ) = ( ( 0 [,] N ) i^i ZZ ) -> |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) = |^|_ k e. ( ( 0 [,] N ) i^i ZZ ) dom ( ( S Dn F ) ` k ) ) |
|
| 81 | 79 80 | syl | |- ( ( ph /\ n = N ) -> |^|_ k e. ( ( 0 [,] n ) i^i ZZ ) dom ( ( S Dn F ) ` k ) = |^|_ k e. ( ( 0 [,] N ) i^i ZZ ) dom ( ( S Dn F ) ` k ) ) |
| 82 | pnfex | |- +oo e. _V |
|
| 83 | 82 | elsn2 | |- ( N e. { +oo } <-> N = +oo ) |
| 84 | 83 | orbi2i | |- ( ( N e. NN0 \/ N e. { +oo } ) <-> ( N e. NN0 \/ N = +oo ) ) |
| 85 | 4 84 | sylibr | |- ( ph -> ( N e. NN0 \/ N e. { +oo } ) ) |
| 86 | elun | |- ( N e. ( NN0 u. { +oo } ) <-> ( N e. NN0 \/ N e. { +oo } ) ) |
|
| 87 | 85 86 | sylibr | |- ( ph -> N e. ( NN0 u. { +oo } ) ) |
| 88 | 5 | ralrimiva | |- ( ph -> A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) |
| 89 | oveq2 | |- ( n = N -> ( 0 [,] n ) = ( 0 [,] N ) ) |
|
| 90 | 89 | ineq1d | |- ( n = N -> ( ( 0 [,] n ) i^i ZZ ) = ( ( 0 [,] N ) i^i ZZ ) ) |
| 91 | 90 | neeq1d | |- ( n = N -> ( ( ( 0 [,] n ) i^i ZZ ) =/= (/) <-> ( ( 0 [,] N ) i^i ZZ ) =/= (/) ) ) |
| 92 | 91 52 | vtoclga | |- ( N e. ( NN0 u. { +oo } ) -> ( ( 0 [,] N ) i^i ZZ ) =/= (/) ) |
| 93 | 87 92 | syl | |- ( ph -> ( ( 0 [,] N ) i^i ZZ ) =/= (/) ) |
| 94 | r19.2z | |- ( ( ( ( 0 [,] N ) i^i ZZ ) =/= (/) /\ A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) -> E. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) |
|
| 95 | 93 88 94 | syl2anc | |- ( ph -> E. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) |
| 96 | elex | |- ( B e. dom ( ( S Dn F ) ` k ) -> B e. _V ) |
|
| 97 | 96 | rexlimivw | |- ( E. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) -> B e. _V ) |
| 98 | eliin | |- ( B e. _V -> ( B e. |^|_ k e. ( ( 0 [,] N ) i^i ZZ ) dom ( ( S Dn F ) ` k ) <-> A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) ) |
|
| 99 | 95 97 98 | 3syl | |- ( ph -> ( B e. |^|_ k e. ( ( 0 [,] N ) i^i ZZ ) dom ( ( S Dn F ) ` k ) <-> A. k e. ( ( 0 [,] N ) i^i ZZ ) B e. dom ( ( S Dn F ) ` k ) ) ) |
| 100 | 88 99 | mpbird | |- ( ph -> B e. |^|_ k e. ( ( 0 [,] N ) i^i ZZ ) dom ( ( S Dn F ) ` k ) ) |
| 101 | snssi | |- ( x e. CC -> { x } C_ CC ) |
|
| 102 | 1 2 3 4 5 | taylfvallem | |- ( ( ph /\ x e. CC ) -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) C_ CC ) |
| 103 | xpss12 | |- ( ( { x } C_ CC /\ ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) C_ CC ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
|
| 104 | 101 102 103 | syl2an2 | |- ( ( ph /\ x e. CC ) -> ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
| 105 | 104 | ralrimiva | |- ( ph -> A. x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
| 106 | iunss | |- ( U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) <-> A. x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
|
| 107 | 105 106 | sylibr | |- ( ph -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) ) |
| 108 | 25 25 | xpex | |- ( CC X. CC ) e. _V |
| 109 | 108 | ssex | |- ( U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) C_ ( CC X. CC ) -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) e. _V ) |
| 110 | 107 109 | syl | |- ( ph -> U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) e. _V ) |
| 111 | 63 76 81 87 100 110 | ovmpodx | |- ( ph -> ( N ( S Tayl F ) B ) = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
| 112 | 6 111 | eqtrid | |- ( ph -> T = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |