Metamath Proof Explorer


Theorem taylfval

Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x .

This "extended" version of taylpfval additionally handles the case N = +oo , in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
taylfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
taylfval.a ( 𝜑𝐴𝑆 )
taylfval.n ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
taylfval.b ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
taylfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
Assertion taylfval ( 𝜑𝑇 = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 taylfval.s ( 𝜑𝑆 ∈ { ℝ , ℂ } )
2 taylfval.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
3 taylfval.a ( 𝜑𝐴𝑆 )
4 taylfval.n ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
5 taylfval.b ( ( 𝜑𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
6 taylfval.t 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 )
7 df-tayl Tayl = ( 𝑠 ∈ { ℝ , ℂ } , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) )
8 7 a1i ( 𝜑 → Tayl = ( 𝑠 ∈ { ℝ , ℂ } , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) )
9 eqidd ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → ( ℕ0 ∪ { +∞ } ) = ( ℕ0 ∪ { +∞ } ) )
10 oveq12 ( ( 𝑠 = 𝑆𝑓 = 𝐹 ) → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝐹 ) )
11 10 ad2antlr ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝐹 ) )
12 11 fveq1d ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
13 12 dmeqd ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
14 13 iineq2dv ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) = 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
15 12 fveq1d ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) )
16 15 oveq1d ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) )
17 16 oveq1d ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) )
18 17 mpteq2dva ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) )
19 18 oveq2d ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) = ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) )
20 19 xpeq2d ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) = ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) )
21 20 iuneq2d ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) )
22 9 14 21 mpoeq123dv ( ( 𝜑 ∧ ( 𝑠 = 𝑆𝑓 = 𝐹 ) ) → ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) = ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) )
23 simpr ( ( 𝜑𝑠 = 𝑆 ) → 𝑠 = 𝑆 )
24 23 oveq2d ( ( 𝜑𝑠 = 𝑆 ) → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) )
25 cnex ℂ ∈ V
26 25 a1i ( 𝜑 → ℂ ∈ V )
27 elpm2r ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
28 26 1 2 3 27 syl22anc ( 𝜑𝐹 ∈ ( ℂ ↑pm 𝑆 ) )
29 nn0ex 0 ∈ V
30 snex { +∞ } ∈ V
31 29 30 unex ( ℕ0 ∪ { +∞ } ) ∈ V
32 0xr 0 ∈ ℝ*
33 nn0ssre 0 ⊆ ℝ
34 ressxr ℝ ⊆ ℝ*
35 33 34 sstri 0 ⊆ ℝ*
36 pnfxr +∞ ∈ ℝ*
37 snssi ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* )
38 36 37 ax-mp { +∞ } ⊆ ℝ*
39 35 38 unssi ( ℕ0 ∪ { +∞ } ) ⊆ ℝ*
40 39 sseli ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 𝑛 ∈ ℝ* )
41 elun ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( 𝑛 ∈ ℕ0𝑛 ∈ { +∞ } ) )
42 nn0ge0 ( 𝑛 ∈ ℕ0 → 0 ≤ 𝑛 )
43 0lepnf 0 ≤ +∞
44 elsni ( 𝑛 ∈ { +∞ } → 𝑛 = +∞ )
45 43 44 breqtrrid ( 𝑛 ∈ { +∞ } → 0 ≤ 𝑛 )
46 42 45 jaoi ( ( 𝑛 ∈ ℕ0𝑛 ∈ { +∞ } ) → 0 ≤ 𝑛 )
47 41 46 sylbi ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 0 ≤ 𝑛 )
48 lbicc2 ( ( 0 ∈ ℝ*𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛 ) → 0 ∈ ( 0 [,] 𝑛 ) )
49 32 40 47 48 mp3an2i ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 0 ∈ ( 0 [,] 𝑛 ) )
50 0z 0 ∈ ℤ
51 inelcm ( ( 0 ∈ ( 0 [,] 𝑛 ) ∧ 0 ∈ ℤ ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ )
52 49 50 51 sylancl ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ )
53 fvex ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V
54 53 dmex dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V
55 54 rgenw 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V
56 iinexg ( ( ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V ) → 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V )
57 52 55 56 sylancl ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V )
58 57 rgen 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V
59 eqid ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) = ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) )
60 59 mpoexxg ( ( ( ℕ0 ∪ { +∞ } ) ∈ V ∧ ∀ 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V ) → ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ∈ V )
61 31 58 60 mp2an ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ∈ V
62 61 a1i ( 𝜑 → ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ∈ V )
63 8 22 24 1 28 62 ovmpodx ( 𝜑 → ( 𝑆 Tayl 𝐹 ) = ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) ) )
64 simprl ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → 𝑛 = 𝑁 )
65 64 oveq2d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( 0 [,] 𝑛 ) = ( 0 [,] 𝑁 ) )
66 65 ineq1d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) )
67 simprr ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → 𝑎 = 𝐵 )
68 67 fveq2d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) )
69 68 oveq1d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) )
70 67 oveq2d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( 𝑥𝑎 ) = ( 𝑥𝐵 ) )
71 70 oveq1d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( ( 𝑥𝑎 ) ↑ 𝑘 ) = ( ( 𝑥𝐵 ) ↑ 𝑘 ) )
72 69 71 oveq12d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) )
73 66 72 mpteq12dv ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) )
74 73 oveq2d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) = ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) )
75 74 xpeq2d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) = ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
76 75 iuneq2d ( ( 𝜑 ∧ ( 𝑛 = 𝑁𝑎 = 𝐵 ) ) → 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝑎 ) ↑ 𝑘 ) ) ) ) ) = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
77 simpr ( ( 𝜑𝑛 = 𝑁 ) → 𝑛 = 𝑁 )
78 77 oveq2d ( ( 𝜑𝑛 = 𝑁 ) → ( 0 [,] 𝑛 ) = ( 0 [,] 𝑁 ) )
79 78 ineq1d ( ( 𝜑𝑛 = 𝑁 ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) )
80 iineq1 ( ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) → 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
81 79 80 syl ( ( 𝜑𝑛 = 𝑁 ) → 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
82 pnfex +∞ ∈ V
83 82 elsn2 ( 𝑁 ∈ { +∞ } ↔ 𝑁 = +∞ )
84 83 orbi2i ( ( 𝑁 ∈ ℕ0𝑁 ∈ { +∞ } ) ↔ ( 𝑁 ∈ ℕ0𝑁 = +∞ ) )
85 4 84 sylibr ( 𝜑 → ( 𝑁 ∈ ℕ0𝑁 ∈ { +∞ } ) )
86 elun ( 𝑁 ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( 𝑁 ∈ ℕ0𝑁 ∈ { +∞ } ) )
87 85 86 sylibr ( 𝜑𝑁 ∈ ( ℕ0 ∪ { +∞ } ) )
88 5 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
89 oveq2 ( 𝑛 = 𝑁 → ( 0 [,] 𝑛 ) = ( 0 [,] 𝑁 ) )
90 89 ineq1d ( 𝑛 = 𝑁 → ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) )
91 90 neeq1d ( 𝑛 = 𝑁 → ( ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ ↔ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ ) )
92 91 52 vtoclga ( 𝑁 ∈ ( ℕ0 ∪ { +∞ } ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ )
93 87 92 syl ( 𝜑 → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ )
94 r19.2z ( ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
95 93 88 94 syl2anc ( 𝜑 → ∃ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
96 elex ( 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) → 𝐵 ∈ V )
97 96 rexlimivw ( ∃ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) → 𝐵 ∈ V )
98 eliin ( 𝐵 ∈ V → ( 𝐵 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) )
99 95 97 98 3syl ( 𝜑 → ( 𝐵 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) )
100 88 99 mpbird ( 𝜑𝐵 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) )
101 snssi ( 𝑥 ∈ ℂ → { 𝑥 } ⊆ ℂ )
102 1 2 3 4 5 taylfvallem ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ )
103 xpss12 ( ( { 𝑥 } ⊆ ℂ ∧ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
104 101 102 103 syl2an2 ( ( 𝜑𝑥 ∈ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
105 104 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
106 iunss ( 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ↔ ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
107 105 106 sylibr ( 𝜑 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) )
108 25 25 xpex ( ℂ × ℂ ) ∈ V
109 108 ssex ( 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) → 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ∈ V )
110 107 109 syl ( 𝜑 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) ∈ V )
111 63 76 81 87 100 110 ovmpodx ( 𝜑 → ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )
112 6 111 eqtrid ( 𝜑𝑇 = 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥𝐵 ) ↑ 𝑘 ) ) ) ) ) )