Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x .
This "extended" version of taylpfval additionally handles the case N = +oo , in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | taylfval.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| taylfval.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| taylfval.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | ||
| taylfval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) | ||
| taylfval.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) | ||
| taylfval.t | ⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) | ||
| Assertion | taylfval | ⊢ ( 𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | taylfval.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | taylfval.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | taylfval.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) | |
| 4 | taylfval.n | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) | |
| 5 | taylfval.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) | |
| 6 | taylfval.t | ⊢ 𝑇 = ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) | |
| 7 | df-tayl | ⊢ Tayl = ( 𝑠 ∈ { ℝ , ℂ } , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → Tayl = ( 𝑠 ∈ { ℝ , ℂ } , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) ) |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ℕ0 ∪ { +∞ } ) = ( ℕ0 ∪ { +∞ } ) ) | |
| 10 | oveq12 | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝐹 ) ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝐹 ) ) |
| 12 | 11 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 13 | 12 | dmeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) = dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 14 | 13 | iineq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) = ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 15 | 12 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) |
| 18 | 17 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) = ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) |
| 20 | 19 | xpeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) = ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) |
| 21 | 20 | iuneq2d | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) = ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) |
| 22 | 9 14 21 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑠 = 𝑆 ∧ 𝑓 = 𝐹 ) ) → ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) = ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) | |
| 24 | 23 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑆 ) → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) |
| 25 | cnex | ⊢ ℂ ∈ V | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ℂ ∈ V ) |
| 27 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 28 | 26 1 2 3 27 | syl22anc | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 29 | nn0ex | ⊢ ℕ0 ∈ V | |
| 30 | snex | ⊢ { +∞ } ∈ V | |
| 31 | 29 30 | unex | ⊢ ( ℕ0 ∪ { +∞ } ) ∈ V |
| 32 | 0xr | ⊢ 0 ∈ ℝ* | |
| 33 | nn0ssre | ⊢ ℕ0 ⊆ ℝ | |
| 34 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 35 | 33 34 | sstri | ⊢ ℕ0 ⊆ ℝ* |
| 36 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 37 | snssi | ⊢ ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* ) | |
| 38 | 36 37 | ax-mp | ⊢ { +∞ } ⊆ ℝ* |
| 39 | 35 38 | unssi | ⊢ ( ℕ0 ∪ { +∞ } ) ⊆ ℝ* |
| 40 | 39 | sseli | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 𝑛 ∈ ℝ* ) |
| 41 | elun | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( 𝑛 ∈ ℕ0 ∨ 𝑛 ∈ { +∞ } ) ) | |
| 42 | nn0ge0 | ⊢ ( 𝑛 ∈ ℕ0 → 0 ≤ 𝑛 ) | |
| 43 | 0lepnf | ⊢ 0 ≤ +∞ | |
| 44 | elsni | ⊢ ( 𝑛 ∈ { +∞ } → 𝑛 = +∞ ) | |
| 45 | 43 44 | breqtrrid | ⊢ ( 𝑛 ∈ { +∞ } → 0 ≤ 𝑛 ) |
| 46 | 42 45 | jaoi | ⊢ ( ( 𝑛 ∈ ℕ0 ∨ 𝑛 ∈ { +∞ } ) → 0 ≤ 𝑛 ) |
| 47 | 41 46 | sylbi | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 0 ≤ 𝑛 ) |
| 48 | lbicc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛 ) → 0 ∈ ( 0 [,] 𝑛 ) ) | |
| 49 | 32 40 47 48 | mp3an2i | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → 0 ∈ ( 0 [,] 𝑛 ) ) |
| 50 | 0z | ⊢ 0 ∈ ℤ | |
| 51 | inelcm | ⊢ ( ( 0 ∈ ( 0 [,] 𝑛 ) ∧ 0 ∈ ℤ ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ ) | |
| 52 | 49 50 51 | sylancl | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ ) |
| 53 | fvex | ⊢ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V | |
| 54 | 53 | dmex | ⊢ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V |
| 55 | 54 | rgenw | ⊢ ∀ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V |
| 56 | iinexg | ⊢ ( ( ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V ) → ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V ) | |
| 57 | 52 55 56 | sylancl | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) → ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V ) |
| 58 | 57 | rgen | ⊢ ∀ 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V |
| 59 | eqid | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) = ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) | |
| 60 | 59 | mpoexxg | ⊢ ( ( ( ℕ0 ∪ { +∞ } ) ∈ V ∧ ∀ 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ∈ V ) → ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ∈ V ) |
| 61 | 31 58 60 | mp2an | ⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ∈ V |
| 62 | 61 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ∈ V ) |
| 63 | 8 22 24 1 28 62 | ovmpodx | ⊢ ( 𝜑 → ( 𝑆 Tayl 𝐹 ) = ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) |
| 64 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → 𝑛 = 𝑁 ) | |
| 65 | 64 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( 0 [,] 𝑛 ) = ( 0 [,] 𝑁 ) ) |
| 66 | 65 | ineq1d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) |
| 67 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → 𝑎 = 𝐵 ) | |
| 68 | 67 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) = ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) ) |
| 70 | 67 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( 𝑥 − 𝑎 ) = ( 𝑥 − 𝐵 ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) = ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) |
| 72 | 69 71 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) = ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) |
| 73 | 66 72 | mpteq12dv | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) |
| 74 | 73 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) = ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) |
| 75 | 74 | xpeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) = ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
| 76 | 75 | iuneq2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 = 𝑁 ∧ 𝑎 = 𝐵 ) ) → ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) = ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
| 77 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) | |
| 78 | 77 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ( 0 [,] 𝑛 ) = ( 0 [,] 𝑁 ) ) |
| 79 | 78 | ineq1d | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) |
| 80 | iineq1 | ⊢ ( ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) → ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ∩ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) = ∩ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 82 | pnfex | ⊢ +∞ ∈ V | |
| 83 | 82 | elsn2 | ⊢ ( 𝑁 ∈ { +∞ } ↔ 𝑁 = +∞ ) |
| 84 | 83 | orbi2i | ⊢ ( ( 𝑁 ∈ ℕ0 ∨ 𝑁 ∈ { +∞ } ) ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
| 85 | 4 84 | sylibr | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 ∈ { +∞ } ) ) |
| 86 | elun | ⊢ ( 𝑁 ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 ∈ { +∞ } ) ) | |
| 87 | 85 86 | sylibr | ⊢ ( 𝜑 → 𝑁 ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 88 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 89 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 0 [,] 𝑛 ) = ( 0 [,] 𝑁 ) ) | |
| 90 | 89 | ineq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 0 [,] 𝑛 ) ∩ ℤ ) = ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) |
| 91 | 90 | neeq1d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 0 [,] 𝑛 ) ∩ ℤ ) ≠ ∅ ↔ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ ) ) |
| 92 | 91 52 | vtoclga | ⊢ ( 𝑁 ∈ ( ℕ0 ∪ { +∞ } ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ ) |
| 93 | 87 92 | syl | ⊢ ( 𝜑 → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ ) |
| 94 | r19.2z | ⊢ ( ( ( ( 0 [,] 𝑁 ) ∩ ℤ ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) | |
| 95 | 93 88 94 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 96 | elex | ⊢ ( 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) → 𝐵 ∈ V ) | |
| 97 | 96 | rexlimivw | ⊢ ( ∃ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) → 𝐵 ∈ V ) |
| 98 | eliin | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) ) | |
| 99 | 95 97 98 | 3syl | ⊢ ( 𝜑 → ( 𝐵 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) ) |
| 100 | 88 99 | mpbird | ⊢ ( 𝜑 → 𝐵 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 101 | snssi | ⊢ ( 𝑥 ∈ ℂ → { 𝑥 } ⊆ ℂ ) | |
| 102 | 1 2 3 4 5 | taylfvallem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) |
| 103 | xpss12 | ⊢ ( ( { 𝑥 } ⊆ ℂ ∧ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) | |
| 104 | 101 102 103 | syl2an2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
| 105 | 104 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
| 106 | iunss | ⊢ ( ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ↔ ∀ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) | |
| 107 | 105 106 | sylibr | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) ) |
| 108 | 25 25 | xpex | ⊢ ( ℂ × ℂ ) ∈ V |
| 109 | 108 | ssex | ⊢ ( ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ⊆ ( ℂ × ℂ ) → ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ∈ V ) |
| 110 | 107 109 | syl | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ∈ V ) |
| 111 | 63 76 81 87 100 110 | ovmpodx | ⊢ ( 𝜑 → ( 𝑁 ( 𝑆 Tayl 𝐹 ) 𝐵 ) = ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |
| 112 | 6 111 | eqtrid | ⊢ ( 𝜑 → 𝑇 = ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝐵 ) ↑ 𝑘 ) ) ) ) ) ) |