Step |
Hyp |
Ref |
Expression |
0 |
|
ctayl |
⊢ Tayl |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
cr |
⊢ ℝ |
3 |
|
cc |
⊢ ℂ |
4 |
2 3
|
cpr |
⊢ { ℝ , ℂ } |
5 |
|
vf |
⊢ 𝑓 |
6 |
|
cpm |
⊢ ↑pm |
7 |
1
|
cv |
⊢ 𝑠 |
8 |
3 7 6
|
co |
⊢ ( ℂ ↑pm 𝑠 ) |
9 |
|
vn |
⊢ 𝑛 |
10 |
|
cn0 |
⊢ ℕ0 |
11 |
|
cpnf |
⊢ +∞ |
12 |
11
|
csn |
⊢ { +∞ } |
13 |
10 12
|
cun |
⊢ ( ℕ0 ∪ { +∞ } ) |
14 |
|
va |
⊢ 𝑎 |
15 |
|
vk |
⊢ 𝑘 |
16 |
|
cc0 |
⊢ 0 |
17 |
|
cicc |
⊢ [,] |
18 |
9
|
cv |
⊢ 𝑛 |
19 |
16 18 17
|
co |
⊢ ( 0 [,] 𝑛 ) |
20 |
|
cz |
⊢ ℤ |
21 |
19 20
|
cin |
⊢ ( ( 0 [,] 𝑛 ) ∩ ℤ ) |
22 |
|
cdvn |
⊢ D𝑛 |
23 |
5
|
cv |
⊢ 𝑓 |
24 |
7 23 22
|
co |
⊢ ( 𝑠 D𝑛 𝑓 ) |
25 |
15
|
cv |
⊢ 𝑘 |
26 |
25 24
|
cfv |
⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) |
27 |
26
|
cdm |
⊢ dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) |
28 |
15 21 27
|
ciin |
⊢ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) |
29 |
|
vx |
⊢ 𝑥 |
30 |
29
|
cv |
⊢ 𝑥 |
31 |
30
|
csn |
⊢ { 𝑥 } |
32 |
|
ccnfld |
⊢ ℂfld |
33 |
|
ctsu |
⊢ tsums |
34 |
14
|
cv |
⊢ 𝑎 |
35 |
34 26
|
cfv |
⊢ ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) |
36 |
|
cdiv |
⊢ / |
37 |
|
cfa |
⊢ ! |
38 |
25 37
|
cfv |
⊢ ( ! ‘ 𝑘 ) |
39 |
35 38 36
|
co |
⊢ ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) |
40 |
|
cmul |
⊢ · |
41 |
|
cmin |
⊢ − |
42 |
30 34 41
|
co |
⊢ ( 𝑥 − 𝑎 ) |
43 |
|
cexp |
⊢ ↑ |
44 |
42 25 43
|
co |
⊢ ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) |
45 |
39 44 40
|
co |
⊢ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) |
46 |
15 21 45
|
cmpt |
⊢ ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) |
47 |
32 46 33
|
co |
⊢ ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) |
48 |
31 47
|
cxp |
⊢ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) |
49 |
29 3 48
|
ciun |
⊢ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) |
50 |
9 14 13 28 49
|
cmpo |
⊢ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) |
51 |
1 5 4 8 50
|
cmpo |
⊢ ( 𝑠 ∈ { ℝ , ℂ } , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) |
52 |
0 51
|
wceq |
⊢ Tayl = ( 𝑠 ∈ { ℝ , ℂ } , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ( 𝑛 ∈ ( ℕ0 ∪ { +∞ } ) , 𝑎 ∈ ∩ 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) dom ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ↦ ∪ 𝑥 ∈ ℂ ( { 𝑥 } × ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑛 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑘 ) ‘ 𝑎 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑥 − 𝑎 ) ↑ 𝑘 ) ) ) ) ) ) ) |