Metamath Proof Explorer


Definition df-tayl

Description: Define the Taylor polynomial or Taylor series of a function. TODO-AV: n e. ( NN0 u. { +oo } ) should be replaced by n e. NN0* . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion df-tayl Tayl=s,f𝑝𝑚sn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctayl classTayl
1 vs setvars
2 cr class
3 cc class
4 2 3 cpr class
5 vf setvarf
6 cpm class𝑝𝑚
7 1 cv setvars
8 3 7 6 co class𝑝𝑚s
9 vn setvarn
10 cn0 class0
11 cpnf class+∞
12 11 csn class+∞
13 10 12 cun class0+∞
14 va setvara
15 vk setvark
16 cc0 class0
17 cicc class.
18 9 cv setvarn
19 16 18 17 co class0n
20 cz class
21 19 20 cin class0n
22 cdvn classDn
23 5 cv setvarf
24 7 23 22 co classsDnf
25 15 cv setvark
26 25 24 cfv classsDnfk
27 26 cdm classdomsDnfk
28 15 21 27 ciin classk0ndomsDnfk
29 vx setvarx
30 29 cv setvarx
31 30 csn classx
32 ccnfld classfld
33 ctsu classtsums
34 14 cv setvara
35 34 26 cfv classsDnfka
36 cdiv class÷
37 cfa class!
38 25 37 cfv classk!
39 35 38 36 co classsDnfkak!
40 cmul class×
41 cmin class
42 30 34 41 co classxa
43 cexp class^
44 42 25 43 co classxak
45 39 44 40 co classsDnfkak!xak
46 15 21 45 cmpt classk0nsDnfkak!xak
47 32 46 33 co classfldtsumsk0nsDnfkak!xak
48 31 47 cxp classx×fldtsumsk0nsDnfkak!xak
49 29 3 48 ciun classxx×fldtsumsk0nsDnfkak!xak
50 9 14 13 28 49 cmpo classn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak
51 1 5 4 8 50 cmpo classs,f𝑝𝑚sn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak
52 0 51 wceq wffTayl=s,f𝑝𝑚sn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak