| Step |
Hyp |
Ref |
Expression |
| 1 |
|
taylfval.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
taylfval.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 3 |
|
taylfval.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 4 |
|
taylfval.n |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
| 5 |
|
taylfval.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → 𝐵 ∈ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ) |
| 6 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 7 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 8 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 9 |
7 8
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℂ ) → ℂfld ∈ CMnd ) |
| 10 |
|
cnfldtps |
⊢ ℂfld ∈ TopSp |
| 11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℂ ) → ℂfld ∈ TopSp ) |
| 12 |
|
ovex |
⊢ ( 0 [,] 𝑁 ) ∈ V |
| 13 |
12
|
inex1 |
⊢ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℂ ) → ( ( 0 [,] 𝑁 ) ∩ ℤ ) ∈ V ) |
| 15 |
1 2 3 4 5
|
taylfvallem1 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ℂ ) ∧ 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ) → ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋 − 𝐵 ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 16 |
15
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℂ ) → ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋 − 𝐵 ) ↑ 𝑘 ) ) ) : ( ( 0 [,] 𝑁 ) ∩ ℤ ) ⟶ ℂ ) |
| 17 |
6 9 11 14 16
|
tsmscl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℂ ) → ( ℂfld tsums ( 𝑘 ∈ ( ( 0 [,] 𝑁 ) ∩ ℤ ) ↦ ( ( ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑘 ) ‘ 𝐵 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝑋 − 𝐵 ) ↑ 𝑘 ) ) ) ) ⊆ ℂ ) |