Metamath Proof Explorer


Theorem taylfvallem

Description: Lemma for taylfval . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φS
taylfval.f φF:A
taylfval.a φAS
taylfval.n φN0N=+∞
taylfval.b φk0NBdomSDnFk
Assertion taylfvallem φXfldtsumsk0NSDnFkBk!XBk

Proof

Step Hyp Ref Expression
1 taylfval.s φS
2 taylfval.f φF:A
3 taylfval.a φAS
4 taylfval.n φN0N=+∞
5 taylfval.b φk0NBdomSDnFk
6 cnfldbas =Basefld
7 cnring fldRing
8 ringcmn fldRingfldCMnd
9 7 8 mp1i φXfldCMnd
10 cnfldtps fldTopSp
11 10 a1i φXfldTopSp
12 ovex 0NV
13 12 inex1 0NV
14 13 a1i φX0NV
15 1 2 3 4 5 taylfvallem1 φXk0NSDnFkBk!XBk
16 15 fmpttd φXk0NSDnFkBk!XBk:0N
17 6 9 11 14 16 tsmscl φXfldtsumsk0NSDnFkBk!XBk