Step |
Hyp |
Ref |
Expression |
1 |
|
taylfval.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
taylfval.f |
|- ( ph -> F : A --> CC ) |
3 |
|
taylfval.a |
|- ( ph -> A C_ S ) |
4 |
|
taylfval.n |
|- ( ph -> ( N e. NN0 \/ N = +oo ) ) |
5 |
|
taylfval.b |
|- ( ( ph /\ k e. ( ( 0 [,] N ) i^i ZZ ) ) -> B e. dom ( ( S Dn F ) ` k ) ) |
6 |
|
taylfval.t |
|- T = ( N ( S Tayl F ) B ) |
7 |
1 2 3 4 5 6
|
taylfval |
|- ( ph -> T = U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) |
8 |
7
|
eleq2d |
|- ( ph -> ( <. X , Y >. e. T <-> <. X , Y >. e. U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) ) ) |
9 |
|
df-br |
|- ( X T Y <-> <. X , Y >. e. T ) |
10 |
9
|
bicomi |
|- ( <. X , Y >. e. T <-> X T Y ) |
11 |
|
oveq1 |
|- ( x = X -> ( x - B ) = ( X - B ) ) |
12 |
11
|
oveq1d |
|- ( x = X -> ( ( x - B ) ^ k ) = ( ( X - B ) ^ k ) ) |
13 |
12
|
oveq2d |
|- ( x = X -> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) = ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) |
14 |
13
|
mpteq2dv |
|- ( x = X -> ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) = ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) ) |
15 |
14
|
oveq2d |
|- ( x = X -> ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) = ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) ) ) |
16 |
15
|
opeliunxp2 |
|- ( <. X , Y >. e. U_ x e. CC ( { x } X. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( x - B ) ^ k ) ) ) ) ) <-> ( X e. CC /\ Y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) ) ) ) |
17 |
8 10 16
|
3bitr3g |
|- ( ph -> ( X T Y <-> ( X e. CC /\ Y e. ( CCfld tsums ( k e. ( ( 0 [,] N ) i^i ZZ ) |-> ( ( ( ( ( S Dn F ) ` k ) ` B ) / ( ! ` k ) ) x. ( ( X - B ) ^ k ) ) ) ) ) ) ) |