Metamath Proof Explorer


Theorem eltayl

Description: Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φS
taylfval.f φF:A
taylfval.a φAS
taylfval.n φN0N=+∞
taylfval.b φk0NBdomSDnFk
taylfval.t T=NSTaylFB
Assertion eltayl φXTYXYfldtsumsk0NSDnFkBk!XBk

Proof

Step Hyp Ref Expression
1 taylfval.s φS
2 taylfval.f φF:A
3 taylfval.a φAS
4 taylfval.n φN0N=+∞
5 taylfval.b φk0NBdomSDnFk
6 taylfval.t T=NSTaylFB
7 1 2 3 4 5 6 taylfval φT=xx×fldtsumsk0NSDnFkBk!xBk
8 7 eleq2d φXYTXYxx×fldtsumsk0NSDnFkBk!xBk
9 df-br XTYXYT
10 9 bicomi XYTXTY
11 oveq1 x=XxB=XB
12 11 oveq1d x=XxBk=XBk
13 12 oveq2d x=XSDnFkBk!xBk=SDnFkBk!XBk
14 13 mpteq2dv x=Xk0NSDnFkBk!xBk=k0NSDnFkBk!XBk
15 14 oveq2d x=Xfldtsumsk0NSDnFkBk!xBk=fldtsumsk0NSDnFkBk!XBk
16 15 opeliunxp2 XYxx×fldtsumsk0NSDnFkBk!xBkXYfldtsumsk0NSDnFkBk!XBk
17 8 10 16 3bitr3g φXTYXYfldtsumsk0NSDnFkBk!XBk