| Step | Hyp | Ref | Expression | 
						
							| 1 |  | taylpfval.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | taylpfval.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 |  | taylpfval.a | ⊢ ( 𝜑  →  𝐴  ⊆  𝑆 ) | 
						
							| 4 |  | taylpfval.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | taylpfval.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 6 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 7 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 8 |  | fzval2 | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0 ... 𝑁 )  =  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 9 | 6 7 8 | sylancr | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  =  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ℂ )  →  ( 𝑘  ∈  ( 0 ... 𝑁 )  ↔  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) ) | 
						
							| 13 | 4 | orcd | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ0  ∨  𝑁  =  +∞ ) ) | 
						
							| 14 | 1 2 3 4 5 | taylplem1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  𝐵  ∈  dom  ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ) | 
						
							| 15 | 1 2 3 13 14 | taylfvallem1 | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 [,] 𝑁 )  ∩  ℤ ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝑋  −  𝐵 ) ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 16 | 12 15 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ( ( 𝑆  D𝑛  𝐹 ) ‘ 𝑘 ) ‘ 𝐵 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝑋  −  𝐵 ) ↑ 𝑘 ) )  ∈  ℂ ) |