Metamath Proof Explorer


Theorem tbsyl

Description: The weak syllogism from Tarski-Bernays'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses tbsyl.1
|- ( ph -> ps )
tbsyl.2
|- ( ps -> ch )
Assertion tbsyl
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 tbsyl.1
 |-  ( ph -> ps )
2 tbsyl.2
 |-  ( ps -> ch )
3 tb-ax1
 |-  ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )
4 1 3 ax-mp
 |-  ( ( ps -> ch ) -> ( ph -> ch ) )
5 2 4 ax-mp
 |-  ( ph -> ch )