Metamath Proof Explorer


Theorem termcnex

Description: The class of all terminal categories is a proper class. Therefore both the class of all thin categories and the class of all categories are proper classes. Note that snnex is equivalent to snglV e/ V . (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion termcnex
|- TermCat e/ _V

Proof

Step Hyp Ref Expression
1 snnex
 |-  { b | E. x b = { x } } e/ _V
2 basrestermcfo
 |-  ( Base |` TermCat ) : TermCat -onto-> { b | E. x b = { x } }
3 1 2 fonex
 |-  TermCat e/ _V