| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basfn |
|- Base Fn _V |
| 2 |
|
id |
|- ( c e. TermCat -> c e. TermCat ) |
| 3 |
|
eqid |
|- ( Base ` c ) = ( Base ` c ) |
| 4 |
2 3
|
termcbas |
|- ( c e. TermCat -> E. x ( Base ` c ) = { x } ) |
| 5 |
|
discsntermlem |
|- ( E. x ( Base ` c ) = { x } -> ( Base ` c ) e. { b | E. x b = { x } } ) |
| 6 |
4 5
|
syl |
|- ( c e. TermCat -> ( Base ` c ) e. { b | E. x b = { x } } ) |
| 7 |
|
basrestermcfolem |
|- ( a e. { b | E. x b = { x } } -> E. x a = { x } ) |
| 8 |
|
eqid |
|- { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } = { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } |
| 9 |
|
eqid |
|- ( ProsetToCat ` { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } ) = ( ProsetToCat ` { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } ) |
| 10 |
8 9
|
discsnterm |
|- ( E. x a = { x } -> ( ProsetToCat ` { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } ) e. TermCat ) |
| 11 |
7 10
|
syl |
|- ( a e. { b | E. x b = { x } } -> ( ProsetToCat ` { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } ) e. TermCat ) |
| 12 |
8 9
|
discbas |
|- ( a e. { b | E. x b = { x } } -> a = ( Base ` ( ProsetToCat ` { <. ( Base ` ndx ) , a >. , <. ( le ` ndx ) , ( _I |` a ) >. } ) ) ) |
| 13 |
1 6 11 12
|
slotresfo |
|- ( Base |` TermCat ) : TermCat -onto-> { b | E. x b = { x } } |