Description: A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discthin.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| discthin.c | |- C = ( ProsetToCat ` K ) |
||
| Assertion | discbas | |- ( B e. V -> B = ( Base ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discthin.k | |- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. } |
|
| 2 | discthin.c | |- C = ( ProsetToCat ` K ) |
|
| 3 | 2 | a1i | |- ( B e. V -> C = ( ProsetToCat ` K ) ) |
| 4 | 1 | resipos | |- ( B e. V -> K e. Poset ) |
| 5 | posprs | |- ( K e. Poset -> K e. Proset ) |
|
| 6 | 4 5 | syl | |- ( B e. V -> K e. Proset ) |
| 7 | 1 | resiposbas | |- ( B e. V -> B = ( Base ` K ) ) |
| 8 | 3 6 7 | prstcbas | |- ( B e. V -> B = ( Base ` C ) ) |