Metamath Proof Explorer


Theorem discbas

Description: A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses discthin.k
|- K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. }
discthin.c
|- C = ( ProsetToCat ` K )
Assertion discbas
|- ( B e. V -> B = ( Base ` C ) )

Proof

Step Hyp Ref Expression
1 discthin.k
 |-  K = { <. ( Base ` ndx ) , B >. , <. ( le ` ndx ) , ( _I |` B ) >. }
2 discthin.c
 |-  C = ( ProsetToCat ` K )
3 2 a1i
 |-  ( B e. V -> C = ( ProsetToCat ` K ) )
4 1 resipos
 |-  ( B e. V -> K e. Poset )
5 posprs
 |-  ( K e. Poset -> K e. Proset )
6 4 5 syl
 |-  ( B e. V -> K e. Proset )
7 1 resiposbas
 |-  ( B e. V -> B = ( Base ` K ) )
8 3 6 7 prstcbas
 |-  ( B e. V -> B = ( Base ` C ) )