Metamath Proof Explorer


Theorem discbas

Description: A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses discthin.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
discthin.c 𝐶 = ( ProsetToCat ‘ 𝐾 )
Assertion discbas ( 𝐵𝑉𝐵 = ( Base ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 discthin.k 𝐾 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( le ‘ ndx ) , ( I ↾ 𝐵 ) ⟩ }
2 discthin.c 𝐶 = ( ProsetToCat ‘ 𝐾 )
3 2 a1i ( 𝐵𝑉𝐶 = ( ProsetToCat ‘ 𝐾 ) )
4 1 resipos ( 𝐵𝑉𝐾 ∈ Poset )
5 posprs ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )
6 4 5 syl ( 𝐵𝑉𝐾 ∈ Proset )
7 1 resiposbas ( 𝐵𝑉𝐵 = ( Base ‘ 𝐾 ) )
8 3 6 7 prstcbas ( 𝐵𝑉𝐵 = ( Base ‘ 𝐶 ) )