Description: A discrete category (a category whose only morphisms are the identity morphisms) can be constructed for any base set. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | discthin.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| discthin.c | ⊢ 𝐶 = ( ProsetToCat ‘ 𝐾 ) | ||
| Assertion | discbas | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discthin.k | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( le ‘ ndx ) , ( I ↾ 𝐵 ) 〉 } | |
| 2 | discthin.c | ⊢ 𝐶 = ( ProsetToCat ‘ 𝐾 ) | |
| 3 | 2 | a1i | ⊢ ( 𝐵 ∈ 𝑉 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
| 4 | 1 | resipos | ⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ Poset ) |
| 5 | posprs | ⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐵 ∈ 𝑉 → 𝐾 ∈ Proset ) |
| 7 | 1 | resiposbas | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 8 | 3 6 7 | prstcbas | ⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐶 ) ) |