Metamath Proof Explorer


Theorem discsntermlem

Description: A singlegon is an element of the class of singlegons. The converse ( basrestermcfolem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion discsntermlem
|- ( E. x B = { x } -> B e. { b | E. x b = { x } } )

Proof

Step Hyp Ref Expression
1 vsnex
 |-  { x } e. _V
2 eleq1
 |-  ( B = { x } -> ( B e. _V <-> { x } e. _V ) )
3 1 2 mpbiri
 |-  ( B = { x } -> B e. _V )
4 3 exlimiv
 |-  ( E. x B = { x } -> B e. _V )
5 eqeq1
 |-  ( b = B -> ( b = { x } <-> B = { x } ) )
6 5 exbidv
 |-  ( b = B -> ( E. x b = { x } <-> E. x B = { x } ) )
7 6 elabg
 |-  ( B e. _V -> ( B e. { b | E. x b = { x } } <-> E. x B = { x } ) )
8 4 7 syl
 |-  ( E. x B = { x } -> ( B e. { b | E. x b = { x } } <-> E. x B = { x } ) )
9 8 ibir
 |-  ( E. x B = { x } -> B e. { b | E. x b = { x } } )