Metamath Proof Explorer


Theorem basrestermcfolem

Description: An element of the class of singlegons is a singlegon. The converse ( discsntermlem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion basrestermcfolem
|- ( B e. { b | E. x b = { x } } -> E. x B = { x } )

Proof

Step Hyp Ref Expression
1 eqeq1
 |-  ( b = B -> ( b = { x } <-> B = { x } ) )
2 1 exbidv
 |-  ( b = B -> ( E. x b = { x } <-> E. x B = { x } ) )
3 2 elabg
 |-  ( B e. { b | E. x b = { x } } -> ( B e. { b | E. x b = { x } } <-> E. x B = { x } ) )
4 3 ibi
 |-  ( B e. { b | E. x b = { x } } -> E. x B = { x } )