Description: An element of the class of singlegons is a singlegon. The converse ( discsntermlem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basrestermcfolem | |- ( B e. { b | E. x b = { x } } -> E. x B = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( b = B -> ( b = { x } <-> B = { x } ) ) |
|
| 2 | 1 | exbidv | |- ( b = B -> ( E. x b = { x } <-> E. x B = { x } ) ) |
| 3 | 2 | elabg | |- ( B e. { b | E. x b = { x } } -> ( B e. { b | E. x b = { x } } <-> E. x B = { x } ) ) |
| 4 | 3 | ibi | |- ( B e. { b | E. x b = { x } } -> E. x B = { x } ) |