Description: An element of the class of singlegons is a singlegon. The converse ( discsntermlem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basrestermcfolem | ⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ∃ 𝑥 𝐵 = { 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 = { 𝑥 } ↔ 𝐵 = { 𝑥 } ) ) | |
| 2 | 1 | exbidv | ⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑥 𝑏 = { 𝑥 } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 3 | 2 | elabg | ⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ∃ 𝑥 𝐵 = { 𝑥 } ) |