Metamath Proof Explorer


Theorem basrestermcfolem

Description: An element of the class of singlegons is a singlegon. The converse ( discsntermlem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion basrestermcfolem ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ∃ 𝑥 𝐵 = { 𝑥 } )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑏 = 𝐵 → ( 𝑏 = { 𝑥 } ↔ 𝐵 = { 𝑥 } ) )
2 1 exbidv ( 𝑏 = 𝐵 → ( ∃ 𝑥 𝑏 = { 𝑥 } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) )
3 2 elabg ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) )
4 3 ibi ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } → ∃ 𝑥 𝐵 = { 𝑥 } )