Metamath Proof Explorer


Theorem discsntermlem

Description: A singlegon is an element of the class of singlegons. The converse ( basrestermcfolem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion discsntermlem ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } )

Proof

Step Hyp Ref Expression
1 vsnex { 𝑥 } ∈ V
2 eleq1 ( 𝐵 = { 𝑥 } → ( 𝐵 ∈ V ↔ { 𝑥 } ∈ V ) )
3 1 2 mpbiri ( 𝐵 = { 𝑥 } → 𝐵 ∈ V )
4 3 exlimiv ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ V )
5 eqeq1 ( 𝑏 = 𝐵 → ( 𝑏 = { 𝑥 } ↔ 𝐵 = { 𝑥 } ) )
6 5 exbidv ( 𝑏 = 𝐵 → ( ∃ 𝑥 𝑏 = { 𝑥 } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) )
7 6 elabg ( 𝐵 ∈ V → ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) )
8 4 7 syl ( ∃ 𝑥 𝐵 = { 𝑥 } → ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) )
9 8 ibir ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } )