Description: A singlegon is an element of the class of singlegons. The converse ( basrestermcfolem ) also holds. This is trivial if B is b ( abid ). (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | discsntermlem | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 2 | eleq1 | ⊢ ( 𝐵 = { 𝑥 } → ( 𝐵 ∈ V ↔ { 𝑥 } ∈ V ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐵 = { 𝑥 } → 𝐵 ∈ V ) |
| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ V ) |
| 5 | eqeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 = { 𝑥 } ↔ 𝐵 = { 𝑥 } ) ) | |
| 6 | 5 | exbidv | ⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑥 𝑏 = { 𝑥 } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 7 | 6 | elabg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 8 | 4 7 | syl | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ( 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 9 | 8 | ibir | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑏 ∣ ∃ 𝑥 𝑏 = { 𝑥 } } ) |