Metamath Proof Explorer


Theorem termcbas

Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c
|- ( ph -> C e. TermCat )
termcbas.b
|- B = ( Base ` C )
Assertion termcbas
|- ( ph -> E. x B = { x } )

Proof

Step Hyp Ref Expression
1 termcbas.c
 |-  ( ph -> C e. TermCat )
2 termcbas.b
 |-  B = ( Base ` C )
3 2 istermc
 |-  ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) )
4 1 3 sylib
 |-  ( ph -> ( C e. ThinCat /\ E. x B = { x } ) )
5 4 simprd
 |-  ( ph -> E. x B = { x } )