Metamath Proof Explorer


Theorem termcbas

Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcbas.c No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
termcbas.b B = Base C
Assertion termcbas φ x B = x

Proof

Step Hyp Ref Expression
1 termcbas.c Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |-
2 termcbas.b B = Base C
3 2 istermc Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) with typecode |-
4 1 3 sylib φ C ThinCat x B = x
5 4 simprd φ x B = x