Metamath Proof Explorer
Description: The base of a terminal category is a singleton. (Contributed by Zhi
Wang, 16-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
|
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
|
Assertion |
termcbas |
⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
2
|
istermc |
⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 5 |
4
|
simprd |
⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |