| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istermc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
fveqeq2 |
⊢ ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 3 |
2
|
exbidv |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 4 |
1
|
eqeq1i |
⊢ ( 𝐵 = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 6 |
3 5
|
bitr4di |
⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 7 |
|
df-termc |
⊢ TermCat = { 𝑐 ∈ ThinCat ∣ ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } } |
| 8 |
6 7
|
elrab2 |
⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |