Metamath Proof Explorer


Theorem istermc2

Description: The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypothesis istermc.b 𝐵 = ( Base ‘ 𝐶 )
Assertion istermc2 ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 istermc.b 𝐵 = ( Base ‘ 𝐶 )
2 1 istermc ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) )
3 eusn ( ∃! 𝑥 𝑥𝐵 ↔ ∃ 𝑥 𝐵 = { 𝑥 } )
4 3 anbi2i ( ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥𝐵 ) ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) )
5 2 4 bitr4i ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥𝐵 ) )