Description: The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| Assertion | istermc2 | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | 1 | istermc | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 3 | eusn | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) | |
| 4 | 3 | anbi2i | ⊢ ( ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 5 | 2 4 | bitr4i | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃! 𝑥 𝑥 ∈ 𝐵 ) ) |