Metamath Proof Explorer


Theorem istermc2

Description: The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypothesis istermc.b
|- B = ( Base ` C )
Assertion istermc2
|- ( C e. TermCat <-> ( C e. ThinCat /\ E! x x e. B ) )

Proof

Step Hyp Ref Expression
1 istermc.b
 |-  B = ( Base ` C )
2 1 istermc
 |-  ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) )
3 eusn
 |-  ( E! x x e. B <-> E. x B = { x } )
4 3 anbi2i
 |-  ( ( C e. ThinCat /\ E! x x e. B ) <-> ( C e. ThinCat /\ E. x B = { x } ) )
5 2 4 bitr4i
 |-  ( C e. TermCat <-> ( C e. ThinCat /\ E! x x e. B ) )