| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istermc.b |
|- B = ( Base ` C ) |
| 2 |
|
fveqeq2 |
|- ( c = C -> ( ( Base ` c ) = { x } <-> ( Base ` C ) = { x } ) ) |
| 3 |
2
|
exbidv |
|- ( c = C -> ( E. x ( Base ` c ) = { x } <-> E. x ( Base ` C ) = { x } ) ) |
| 4 |
1
|
eqeq1i |
|- ( B = { x } <-> ( Base ` C ) = { x } ) |
| 5 |
4
|
exbii |
|- ( E. x B = { x } <-> E. x ( Base ` C ) = { x } ) |
| 6 |
3 5
|
bitr4di |
|- ( c = C -> ( E. x ( Base ` c ) = { x } <-> E. x B = { x } ) ) |
| 7 |
|
df-termc |
|- TermCat = { c e. ThinCat | E. x ( Base ` c ) = { x } } |
| 8 |
6 7
|
elrab2 |
|- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) |