Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusn | |- ( E! x x e. A <-> E. x A = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn | |- ( E! x x e. A <-> E. x { x | x e. A } = { x } ) |
|
| 2 | abid2 | |- { x | x e. A } = A |
|
| 3 | 2 | eqeq1i | |- ( { x | x e. A } = { x } <-> A = { x } ) |
| 4 | 3 | exbii | |- ( E. x { x | x e. A } = { x } <-> E. x A = { x } ) |
| 5 | 1 4 | bitri | |- ( E! x x e. A <-> E. x A = { x } ) |