Metamath Proof Explorer


Theorem eusn

Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010)

Ref Expression
Assertion eusn ∃!xxAxA=x

Proof

Step Hyp Ref Expression
1 euabsn ∃!xxAxx|xA=x
2 abid2 x|xA=A
3 2 eqeq1i x|xA=xA=x
4 3 exbii xx|xA=xxA=x
5 1 4 bitri ∃!xxAxA=x