Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabsnt.1 | |- B e. _V |
|
| rabsnt.2 | |- ( x = B -> ( ph <-> ps ) ) |
||
| Assertion | rabsnt | |- ( { x e. A | ph } = { B } -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnt.1 | |- B e. _V |
|
| 2 | rabsnt.2 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 3 | 1 | snid | |- B e. { B } |
| 4 | id | |- ( { x e. A | ph } = { B } -> { x e. A | ph } = { B } ) |
|
| 5 | 3 4 | eleqtrrid | |- ( { x e. A | ph } = { B } -> B e. { x e. A | ph } ) |
| 6 | 2 | elrab | |- ( B e. { x e. A | ph } <-> ( B e. A /\ ps ) ) |
| 7 | 6 | simprbi | |- ( B e. { x e. A | ph } -> ps ) |
| 8 | 5 7 | syl | |- ( { x e. A | ph } = { B } -> ps ) |