Metamath Proof Explorer


Theorem rabsnt

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses rabsnt.1
|- B e. _V
rabsnt.2
|- ( x = B -> ( ph <-> ps ) )
Assertion rabsnt
|- ( { x e. A | ph } = { B } -> ps )

Proof

Step Hyp Ref Expression
1 rabsnt.1
 |-  B e. _V
2 rabsnt.2
 |-  ( x = B -> ( ph <-> ps ) )
3 1 snid
 |-  B e. { B }
4 id
 |-  ( { x e. A | ph } = { B } -> { x e. A | ph } = { B } )
5 3 4 eleqtrrid
 |-  ( { x e. A | ph } = { B } -> B e. { x e. A | ph } )
6 2 elrab
 |-  ( B e. { x e. A | ph } <-> ( B e. A /\ ps ) )
7 6 simprbi
 |-  ( B e. { x e. A | ph } -> ps )
8 5 7 syl
 |-  ( { x e. A | ph } = { B } -> ps )