Metamath Proof Explorer


Theorem rabsnt

Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses rabsnt.1 𝐵 ∈ V
rabsnt.2 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
Assertion rabsnt ( { 𝑥𝐴𝜑 } = { 𝐵 } → 𝜓 )

Proof

Step Hyp Ref Expression
1 rabsnt.1 𝐵 ∈ V
2 rabsnt.2 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
3 1 snid 𝐵 ∈ { 𝐵 }
4 id ( { 𝑥𝐴𝜑 } = { 𝐵 } → { 𝑥𝐴𝜑 } = { 𝐵 } )
5 3 4 eleqtrrid ( { 𝑥𝐴𝜑 } = { 𝐵 } → 𝐵 ∈ { 𝑥𝐴𝜑 } )
6 2 elrab ( 𝐵 ∈ { 𝑥𝐴𝜑 } ↔ ( 𝐵𝐴𝜓 ) )
7 6 simprbi ( 𝐵 ∈ { 𝑥𝐴𝜑 } → 𝜓 )
8 5 7 syl ( { 𝑥𝐴𝜑 } = { 𝐵 } → 𝜓 )