Metamath Proof Explorer


Theorem istermc3

Description: The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o . Consider en1b , map1 , and euen1b . (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypothesis istermc.b 𝐵 = ( Base ‘ 𝐶 )
Assertion istermc3 ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o ) )

Proof

Step Hyp Ref Expression
1 istermc.b 𝐵 = ( Base ‘ 𝐶 )
2 1 istermc ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) )
3 en1 ( 𝐵 ≈ 1o ↔ ∃ 𝑥 𝐵 = { 𝑥 } )
4 3 anbi2i ( ( 𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o ) ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) )
5 2 4 bitr4i ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o ) )