Metamath Proof Explorer


Theorem termcthin

Description: A terminal category is a thin category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Assertion termcthin ( 𝐶 ∈ TermCat → 𝐶 ∈ ThinCat )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
2 1 istermc ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) )
3 2 simplbi ( 𝐶 ∈ TermCat → 𝐶 ∈ ThinCat )