Metamath Proof Explorer


Theorem istermc3

Description: The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o . Consider en1b , map1 , and euen1b . (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypothesis istermc.b B = Base C
Assertion istermc3 Could not format assertion : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ B ~~ 1o ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 istermc.b B = Base C
2 1 istermc Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x B = { x } ) ) with typecode |-
3 en1 B 1 𝑜 x B = x
4 3 anbi2i C ThinCat B 1 𝑜 C ThinCat x B = x
5 2 4 bitr4i Could not format ( C e. TermCat <-> ( C e. ThinCat /\ B ~~ 1o ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ B ~~ 1o ) ) with typecode |-