Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | termco | ⊢ ( 𝜑 → ∪ 𝐵 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | 1 2 | termcbas | ⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |
| 4 | unieq | ⊢ ( 𝐵 = { 𝑥 } → ∪ 𝐵 = ∪ { 𝑥 } ) | |
| 5 | unisnv | ⊢ ∪ { 𝑥 } = 𝑥 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐵 = { 𝑥 } → ∪ 𝐵 = 𝑥 ) |
| 7 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 8 | 6 7 | eqeltrdi | ⊢ ( 𝐵 = { 𝑥 } → ∪ 𝐵 ∈ { 𝑥 } ) |
| 9 | id | ⊢ ( 𝐵 = { 𝑥 } → 𝐵 = { 𝑥 } ) | |
| 10 | 8 9 | eleqtrrd | ⊢ ( 𝐵 = { 𝑥 } → ∪ 𝐵 ∈ 𝐵 ) |
| 11 | 10 | exlimiv | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } → ∪ 𝐵 ∈ 𝐵 ) |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → ∪ 𝐵 ∈ 𝐵 ) |