Metamath Proof Explorer


Theorem termco

Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses termcbas.c ( 𝜑𝐶 ∈ TermCat )
termcbas.b 𝐵 = ( Base ‘ 𝐶 )
Assertion termco ( 𝜑 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 termcbas.c ( 𝜑𝐶 ∈ TermCat )
2 termcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 1 2 termcbas ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } )
4 unieq ( 𝐵 = { 𝑥 } → 𝐵 = { 𝑥 } )
5 unisnv { 𝑥 } = 𝑥
6 4 5 eqtrdi ( 𝐵 = { 𝑥 } → 𝐵 = 𝑥 )
7 vsnid 𝑥 ∈ { 𝑥 }
8 6 7 eqeltrdi ( 𝐵 = { 𝑥 } → 𝐵 ∈ { 𝑥 } )
9 id ( 𝐵 = { 𝑥 } → 𝐵 = { 𝑥 } )
10 8 9 eleqtrrd ( 𝐵 = { 𝑥 } → 𝐵𝐵 )
11 10 exlimiv ( ∃ 𝑥 𝐵 = { 𝑥 } → 𝐵𝐵 )
12 3 11 syl ( 𝜑 𝐵𝐵 )