| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
⊢ ( 𝜑 → 𝐶 ∈ TermCat ) |
| 2 |
|
termcbas.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcbasmo.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
1 2
|
termcbas |
⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝐵 = { 𝑥 } ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝑋 ∈ 𝐵 ) |
| 7 |
6 5
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝑋 ∈ { 𝑥 } ) |
| 8 |
|
elsni |
⊢ ( 𝑋 ∈ { 𝑥 } → 𝑋 = 𝑥 ) |
| 9 |
8
|
sneqd |
⊢ ( 𝑋 ∈ { 𝑥 } → { 𝑋 } = { 𝑥 } ) |
| 10 |
7 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → { 𝑋 } = { 𝑥 } ) |
| 11 |
5 10
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 = { 𝑥 } ) → 𝐵 = { 𝑋 } ) |
| 12 |
4 11
|
exlimddv |
⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |