Metamath Proof Explorer


Theorem termcbas2

Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses termcbas.c ( 𝜑𝐶 ∈ TermCat )
termcbas.b 𝐵 = ( Base ‘ 𝐶 )
termcbasmo.x ( 𝜑𝑋𝐵 )
Assertion termcbas2 ( 𝜑𝐵 = { 𝑋 } )

Proof

Step Hyp Ref Expression
1 termcbas.c ( 𝜑𝐶 ∈ TermCat )
2 termcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 termcbasmo.x ( 𝜑𝑋𝐵 )
4 1 2 termcbas ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } )
5 simpr ( ( 𝜑𝐵 = { 𝑥 } ) → 𝐵 = { 𝑥 } )
6 3 adantr ( ( 𝜑𝐵 = { 𝑥 } ) → 𝑋𝐵 )
7 6 5 eleqtrd ( ( 𝜑𝐵 = { 𝑥 } ) → 𝑋 ∈ { 𝑥 } )
8 elsni ( 𝑋 ∈ { 𝑥 } → 𝑋 = 𝑥 )
9 8 sneqd ( 𝑋 ∈ { 𝑥 } → { 𝑋 } = { 𝑥 } )
10 7 9 syl ( ( 𝜑𝐵 = { 𝑥 } ) → { 𝑋 } = { 𝑥 } )
11 5 10 eqtr4d ( ( 𝜑𝐵 = { 𝑥 } ) → 𝐵 = { 𝑋 } )
12 4 11 exlimddv ( 𝜑𝐵 = { 𝑋 } )