| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
|- ( ph -> C e. TermCat ) |
| 2 |
|
termcbas.b |
|- B = ( Base ` C ) |
| 3 |
|
termcbasmo.x |
|- ( ph -> X e. B ) |
| 4 |
1 2
|
termcbas |
|- ( ph -> E. x B = { x } ) |
| 5 |
|
simpr |
|- ( ( ph /\ B = { x } ) -> B = { x } ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ B = { x } ) -> X e. B ) |
| 7 |
6 5
|
eleqtrd |
|- ( ( ph /\ B = { x } ) -> X e. { x } ) |
| 8 |
|
elsni |
|- ( X e. { x } -> X = x ) |
| 9 |
8
|
sneqd |
|- ( X e. { x } -> { X } = { x } ) |
| 10 |
7 9
|
syl |
|- ( ( ph /\ B = { x } ) -> { X } = { x } ) |
| 11 |
5 10
|
eqtr4d |
|- ( ( ph /\ B = { x } ) -> B = { X } ) |
| 12 |
4 11
|
exlimddv |
|- ( ph -> B = { X } ) |