| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcbas.c |
|- ( ph -> C e. TermCat ) |
| 2 |
|
termcbas.b |
|- B = ( Base ` C ) |
| 3 |
|
termcbasmo.x |
|- ( ph -> X e. B ) |
| 4 |
|
termcbasmo.y |
|- ( ph -> Y e. B ) |
| 5 |
|
eqeq1 |
|- ( x = X -> ( x = y <-> X = y ) ) |
| 6 |
|
eqeq2 |
|- ( y = Y -> ( X = y <-> X = Y ) ) |
| 7 |
1 2
|
termcbas |
|- ( ph -> E. z B = { z } ) |
| 8 |
|
mosn |
|- ( B = { z } -> E* x x e. B ) |
| 9 |
8
|
exlimiv |
|- ( E. z B = { z } -> E* x x e. B ) |
| 10 |
7 9
|
syl |
|- ( ph -> E* x x e. B ) |
| 11 |
|
moel |
|- ( E* x x e. B <-> A. x e. B A. y e. B x = y ) |
| 12 |
10 11
|
sylib |
|- ( ph -> A. x e. B A. y e. B x = y ) |
| 13 |
5 6 12 3 4
|
rspc2dv |
|- ( ph -> X = Y ) |